irqbalance/cputree.c
Neil Horman 93f959c9a6 Cut over to base irq placement using new algorithm
This is the big move.  The main loop now uses the new balance alg based on
standard deviation away from the average softirq+irq time as read from
/proc/stat.  Initial results look good.

Also cleaned out old data from previous algorithm, so we don't have any dangling
mess
2011-10-06 11:51:17 -04:00

481 lines
12 KiB
C

/*
* Copyright (C) 2006, Intel Corporation
*
* This file is part of irqbalance
*
* This program file is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program in a file named COPYING; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301 USA
*/
/*
* This file contains the code to construct and manipulate a hierarchy of processors,
* cache domains and processor cores.
*/
#include "config.h"
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <dirent.h>
#include <glib.h>
#include "irqbalance.h"
GList *cpus;
GList *cache_domains;
GList *packages;
int package_count;
int cache_domain_count;
int core_count;
/* Users want to be able to keep interrupts away from some cpus; store these in a cpumask_t */
cpumask_t banned_cpus;
cpumask_t cpu_possible_map;
/*
it's convenient to have the complement of banned_cpus available so that
the AND operator can be used to mask out unwanted cpus
*/
static cpumask_t unbanned_cpus;
static struct package* add_cache_domain_to_package(struct cache_domain *cache,
cpumask_t package_mask)
{
GList *entry;
struct package *package;
struct cache_domain *lcache;
entry = g_list_first(packages);
while (entry) {
package = entry->data;
if (cpus_equal(package_mask, package->common.mask))
break;
entry = g_list_next(entry);
}
if (!entry) {
package = calloc(sizeof(struct package), 1);
if (!package)
return NULL;
package->common.mask = package_mask;
packages = g_list_append(packages, package);
package_count++;
}
entry = g_list_first(package->cache_domains);
while (entry) {
lcache = entry->data;
if (lcache == cache)
break;
entry = g_list_next(entry);
}
if (!entry) {
package->cache_domains = g_list_append(package->cache_domains, cache);
cache->package = package;
}
return package;
}
static struct cache_domain* add_cpu_to_cache_domain(struct cpu_core *cpu,
cpumask_t cache_mask)
{
GList *entry;
struct cache_domain *cache;
struct cpu_core *lcpu;
entry = g_list_first(cache_domains);
while (entry) {
cache = entry->data;
if (cpus_equal(cache_mask, cache->common.mask))
break;
entry = g_list_next(entry);
}
if (!entry) {
cache = calloc(sizeof(struct cache_domain), 1);
if (!cache)
return NULL;
cache->common.mask = cache_mask;
cache_domains = g_list_append(cache_domains, cache);
cache_domain_count++;
}
entry = g_list_first(cache->cpu_cores);
while (entry) {
lcpu = entry->data;
if (lcpu == cpu)
break;
entry = g_list_next(entry);
}
if (!entry) {
cache->cpu_cores = g_list_append(cache->cpu_cores, cpu);
cpu->cache_domain = cache;
}
return cache;
}
static void do_one_cpu(char *path)
{
struct cpu_core *cpu;
FILE *file;
char new_path[PATH_MAX];
cpumask_t cache_mask, package_mask;
struct cache_domain *cache;
struct package *package;
DIR *dir;
struct dirent *entry;
int nodeid;
/* skip offline cpus */
snprintf(new_path, PATH_MAX, "%s/online", path);
file = fopen(new_path, "r");
if (file) {
char *line = NULL;
size_t size = 0;
if (getline(&line, &size, file)==0)
return;
fclose(file);
if (line && line[0]=='0') {
free(line);
return;
}
free(line);
}
cpu = malloc(sizeof(struct cpu_core));
if (!cpu)
return;
memset(cpu, 0, sizeof(struct cpu_core));
cpu->common.number = strtoul(&path[27], NULL, 10);
cpu_set(cpu->common.number, cpu_possible_map);
cpu_set(cpu->common.number, cpu->common.mask);
/* if the cpu is on the banned list, just don't add it */
if (cpus_intersects(cpu->common.mask, banned_cpus)) {
free(cpu);
/* even though we don't use the cpu we do need to count it */
core_count++;
return;
}
/* try to read the package mask; if it doesn't exist assume solitary */
snprintf(new_path, PATH_MAX, "%s/topology/core_siblings", path);
file = fopen(new_path, "r");
cpu_set(cpu->common.number, package_mask);
if (file) {
char *line = NULL;
size_t size = 0;
if (getline(&line, &size, file))
cpumask_parse_user(line, strlen(line), package_mask);
fclose(file);
free(line);
}
/* try to read the cache mask; if it doesn't exist assume solitary */
/* We want the deepest cache level available so try index1 first, then index2 */
cpu_set(cpu->common.number, cache_mask);
snprintf(new_path, PATH_MAX, "%s/cache/index1/shared_cpu_map", path);
file = fopen(new_path, "r");
if (file) {
char *line = NULL;
size_t size = 0;
if (getline(&line, &size, file))
cpumask_parse_user(line, strlen(line), cache_mask);
fclose(file);
free(line);
}
snprintf(new_path, PATH_MAX, "%s/cache/index2/shared_cpu_map", path);
file = fopen(new_path, "r");
if (file) {
char *line = NULL;
size_t size = 0;
if (getline(&line, &size, file))
cpumask_parse_user(line, strlen(line), cache_mask);
fclose(file);
free(line);
}
nodeid=0;
dir = opendir(path);
do {
entry = readdir(dir);
if (!entry)
break;
if (strstr(entry->d_name, "node")) {
nodeid = strtoul(&entry->d_name[4], NULL, 10);
break;
}
} while (entry);
closedir(dir);
cache = add_cpu_to_cache_domain(cpu, cache_mask);
package = add_cache_domain_to_package(cache, package_mask);
add_package_to_node(package, nodeid);
/*
blank out the banned cpus from the various masks so that interrupts
will never be told to go there
*/
cpus_and(cpu_cache_domain(cpu)->common.mask, cpu_cache_domain(cpu)->common.mask, unbanned_cpus);
cpus_and(cpu_package(cpu)->common.mask, cpu_package(cpu)->common.mask, unbanned_cpus);
cpus_and(cpu->common.mask, cpu->common.mask, unbanned_cpus);
cpus = g_list_append(cpus, cpu);
core_count++;
}
static void dump_irq(struct irq_info *info, void *data)
{
int spaces = (long int)data;
int i;
for (i=0; i<spaces; i++) printf(" ");
printf("Interrupt %i node_num is %d (%s/%u) \n", info->irq, irq_numa_node(info)->common.number, classes[info->class], (unsigned int)info->load);
}
static void dump_cpu_core(struct common_obj_data *d, void *data __attribute__((unused)))
{
struct cpu_core *c = (struct cpu_core *)d;
printf(" CPU number %i numa_node is %d (load %lu)\n", c->common.number, cpu_numa_node(c)->common.number , (unsigned long)c->common.load);
if (c->common.interrupts)
for_each_irq(c->common.interrupts, dump_irq, (void *)18);
}
static void dump_cache_domain(struct common_obj_data *d, void *data)
{
struct cache_domain *c = (struct cache_domain *)d;
char *buffer = data;
cpumask_scnprintf(buffer, 4095, c->common.mask);
printf(" Cache domain %i: numa_node is %d cpu mask is %s (load %lu) \n", c->common.number, cache_domain_numa_node(c)->common.number, buffer, (unsigned long)c->common.load);
if (c->cpu_cores)
for_each_cpu_core(c->cpu_cores, dump_cpu_core, NULL);
if (c->common.interrupts)
for_each_irq(c->common.interrupts, dump_irq, (void *)10);
}
static void dump_package(struct common_obj_data *d, void *data)
{
struct package *p = (struct package *)d;
char *buffer = data;
cpumask_scnprintf(buffer, 4096, p->common.mask);
printf("Package %i: numa_node is %d cpu mask is %s (load %lu)\n", p->common.number, package_numa_node(p)->common.number, buffer, (unsigned long)p->common.load);
if (p->cache_domains)
for_each_cache_domain(p->cache_domains, dump_cache_domain, buffer);
if (p->common.interrupts)
for_each_irq(p->common.interrupts, dump_irq, (void *)2);
}
void dump_tree(void)
{
char buffer[4096];
for_each_package(NULL, dump_package, buffer);
}
static void clear_cpu_stats(struct common_obj_data *d, void *data __attribute__((unused)))
{
struct cpu_core *c = (struct cpu_core *)d;
c->common.load = 0;
c->irq_load = 0;
c->softirq_load = 0;
}
static void clear_cd_stats(struct common_obj_data *d, void *data __attribute__((unused)))
{
struct cache_domain *c = (struct cache_domain *)d;
c->common.load = 0;
for_each_cpu_core(c->cpu_cores, clear_cpu_stats, NULL);
}
static void clear_package_stats(struct common_obj_data *d, void *data __attribute__((unused)))
{
struct package *p = (struct package *)d;
p->common.load = 0;
for_each_cache_domain(p->cache_domains, clear_cd_stats, NULL);
}
static void clear_node_stats(struct common_obj_data *d, void *data __attribute__((unused)))
{
struct numa_node *n = (struct numa_node *)d;
n->common.load = 0;
for_each_package(n->packages, clear_package_stats, NULL);
}
static void clear_irq_stats(struct irq_info *info, void *data __attribute__((unused)))
{
info->load = 0;
}
/*
* this function removes previous state from the cpu tree, such as
* which level does how much work and the actual lists of interrupts
* assigned to each component
*/
void clear_work_stats(void)
{
for_each_numa_node(NULL, clear_node_stats, NULL);
for_each_irq(NULL, clear_irq_stats, NULL);
}
void parse_cpu_tree(void)
{
DIR *dir;
struct dirent *entry;
cpus_complement(unbanned_cpus, banned_cpus);
dir = opendir("/sys/devices/system/cpu");
if (!dir)
return;
do {
entry = readdir(dir);
if (entry && strlen(entry->d_name)>3 && strstr(entry->d_name,"cpu")) {
char new_path[PATH_MAX];
/*
* We only want to count real cpus, not cpufreq and
* cpuidle
*/
if ((entry->d_name[3] < 0x30) | (entry->d_name[3] > 0x39))
continue;
sprintf(new_path, "/sys/devices/system/cpu/%s", entry->d_name);
do_one_cpu(new_path);
}
} while (entry);
closedir(dir);
if (debug_mode)
dump_tree();
}
/*
* This function frees all memory related to a cpu tree so that a new tree
* can be read
*/
void clear_cpu_tree(void)
{
GList *item;
struct cpu_core *cpu;
struct cache_domain *cache_domain;
struct package *package;
while (packages) {
item = g_list_first(packages);
package = item->data;
g_list_free(package->cache_domains);
g_list_free(package->common.interrupts);
free(package);
packages = g_list_delete_link(packages, item);
}
package_count = 0;
while (cache_domains) {
item = g_list_first(cache_domains);
cache_domain = item->data;
g_list_free(cache_domain->cpu_cores);
g_list_free(cache_domain->common.interrupts);
free(cache_domain);
cache_domains = g_list_delete_link(cache_domains, item);
}
cache_domain_count = 0;
while (cpus) {
item = g_list_first(cpus);
cpu = item->data;
g_list_free(cpu->common.interrupts);
free(cpu);
cpus = g_list_delete_link(cpus, item);
}
core_count = 0;
}
void for_each_package(GList *list, void (*cb)(struct common_obj_data *p, void *data), void *data)
{
GList *entry = g_list_first(list ? list : packages);
GList *next;
while (entry) {
next = g_list_next(entry);
cb(entry->data, data);
entry = next;
}
}
void for_each_cache_domain(GList *list, void (*cb)(struct common_obj_data *c, void *data), void *data)
{
GList *entry = g_list_first(list ? list : cache_domains);
GList *next;
while (entry) {
next = g_list_next(entry);
cb(entry->data, data);
entry = next;
}
}
void for_each_cpu_core(GList *list, void (*cb)(struct common_obj_data *c, void *data), void *data)
{
GList *entry = g_list_first(list ? list : cpus);
GList *next;
while (entry) {
next = g_list_next(entry);
cb(entry->data, data);
entry = next;
}
}
static gint compare_cpus(gconstpointer a, gconstpointer b)
{
const struct cpu_core *ai = a;
const struct cpu_core *bi = b;
return ai->common.number - bi->common.number;
}
struct cpu_core *find_cpu_core(int cpunr)
{
GList *entry;
struct cpu_core find;
find.common.number = cpunr;
entry = g_list_find_custom(cpus, &find, compare_cpus);
return entry ? entry->data : NULL;
}
int get_cpu_count(void)
{
return g_list_length(cpus);
}