irqbalance/cputree.c
Veronika Kabatova d1993bcde2 Add ability for socket communication
This will be used with user interface and also can be used as API for
users to create their own scripts on top of. The socket communication
can be used for receiving data about IRQs-to-CPUs assignments and setup,
as well as setting some options during runtime.

Socket address: irqbalance<PID>.sock

Data to send to socket:
stats: get the assignment tree of CPUs and IRQs
setup: get values of sleep interval, banned IRQs and banned CPUs
settings sleep <int>: set new sleep interval value
settings cpus <cpu_number1> <cpu_number2> ... : ban listed CPUs from
                                                IRQ handling (old values
                                                are forgotten, not added to)
settings ban irqs <irq1> <irq2> ... : ban listed IRQs from balancing (old
                                      values are forgotten, not added to)

Signed-off-by: Veronika Kabatova <vkabatov@redhat.com>
2017-01-03 08:48:42 -05:00

537 lines
13 KiB
C

/*
* Copyright (C) 2006, Intel Corporation
* Copyright (C) 2012, Neil Horman <nhorman@tuxdriver.com>
*
* This file is part of irqbalance
*
* This program file is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program in a file named COPYING; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301 USA
*/
/*
* This file contains the code to construct and manipulate a hierarchy of processors,
* cache domains and processor cores.
*/
#include "config.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <dirent.h>
#include <glib.h>
#include "irqbalance.h"
extern char *banned_cpumask_from_ui;
GList *cpus;
GList *cache_domains;
GList *packages;
int package_count;
int cache_domain_count;
int core_count;
/* Users want to be able to keep interrupts away from some cpus; store these in a cpumask_t */
cpumask_t banned_cpus;
cpumask_t cpu_possible_map;
/*
it's convenient to have the complement of banned_cpus available so that
the AND operator can be used to mask out unwanted cpus
*/
cpumask_t unbanned_cpus;
/*
* By default do not place IRQs on CPUs the kernel keeps isolated or
* nohz_full, as specified through the boot commandline. Users can
* override this with the IRQBALANCE_BANNED_CPUS environment variable.
*/
static void setup_banned_cpus(void)
{
FILE *file;
char *line = NULL;
size_t size = 0;
char buffer[4096];
cpumask_t nohz_full;
cpumask_t isolated_cpus;
cpus_clear(isolated_cpus);
cpus_clear(nohz_full);
/* A manually specified cpumask overrides auto-detection. */
if (banned_cpumask_from_ui != NULL) {
cpulist_parse(banned_cpumask_from_ui,
strlen(banned_cpumask_from_ui), banned_cpus);
goto out;
}
if (getenv("IRQBALANCE_BANNED_CPUS")) {
cpumask_parse_user(getenv("IRQBALANCE_BANNED_CPUS"), strlen(getenv("IRQBALANCE_BANNED_CPUS")), banned_cpus);
goto out;
}
file = fopen("/sys/devices/system/cpu/isolated", "r");
if (file) {
if (getline(&line, &size, file) > 0) {
if (strlen(line) && line[0] != '\n')
cpulist_parse(line, strlen(line), isolated_cpus);
free(line);
line = NULL;
size = 0;
}
fclose(file);
}
file = fopen("/sys/devices/system/cpu/nohz_full", "r");
if (file) {
if (getline(&line, &size, file) > 0) {
if (strlen(line) && line[0] != '\n')
cpulist_parse(line, strlen(line), nohz_full);
free(line);
line = NULL;
size = 0;
}
fclose(file);
}
cpus_or(banned_cpus, nohz_full, isolated_cpus);
out:
cpumask_scnprintf(buffer, 4096, isolated_cpus);
log(TO_CONSOLE, LOG_INFO, "Isolated CPUs: %s\n", buffer);
cpumask_scnprintf(buffer, 4096, nohz_full);
log(TO_CONSOLE, LOG_INFO, "Adaptive-ticks CPUs: %s\n", buffer);
cpumask_scnprintf(buffer, 4096, banned_cpus);
log(TO_CONSOLE, LOG_INFO, "Banned CPUs: %s\n", buffer);
}
static struct topo_obj* add_cache_domain_to_package(struct topo_obj *cache,
int packageid, cpumask_t package_mask)
{
GList *entry;
struct topo_obj *package;
struct topo_obj *lcache;
entry = g_list_first(packages);
while (entry) {
package = entry->data;
if (cpus_equal(package_mask, package->mask)) {
if (packageid != package->number)
log(TO_ALL, LOG_WARNING, "package_mask with different physical_package_id found!\n");
break;
}
entry = g_list_next(entry);
}
if (!entry) {
package = calloc(sizeof(struct topo_obj), 1);
if (!package)
return NULL;
package->mask = package_mask;
package->obj_type = OBJ_TYPE_PACKAGE;
package->obj_type_list = &packages;
package->number = packageid;
packages = g_list_append(packages, package);
package_count++;
}
entry = g_list_first(package->children);
while (entry) {
lcache = entry->data;
if (lcache == cache)
break;
entry = g_list_next(entry);
}
if (!entry) {
package->children = g_list_append(package->children, cache);
cache->parent = package;
}
return package;
}
static struct topo_obj* add_cpu_to_cache_domain(struct topo_obj *cpu,
cpumask_t cache_mask)
{
GList *entry;
struct topo_obj *cache;
struct topo_obj *lcpu;
entry = g_list_first(cache_domains);
while (entry) {
cache = entry->data;
if (cpus_equal(cache_mask, cache->mask))
break;
entry = g_list_next(entry);
}
if (!entry) {
cache = calloc(sizeof(struct topo_obj), 1);
if (!cache)
return NULL;
cache->obj_type = OBJ_TYPE_CACHE;
cache->mask = cache_mask;
cache->number = cache_domain_count;
cache->obj_type_list = &cache_domains;
cache_domains = g_list_append(cache_domains, cache);
cache_domain_count++;
}
entry = g_list_first(cache->children);
while (entry) {
lcpu = entry->data;
if (lcpu == cpu)
break;
entry = g_list_next(entry);
}
if (!entry) {
cache->children = g_list_append(cache->children, cpu);
cpu->parent = (struct topo_obj *)cache;
}
return cache;
}
static void do_one_cpu(char *path)
{
struct topo_obj *cpu;
FILE *file;
char new_path[PATH_MAX];
cpumask_t cache_mask, package_mask;
struct topo_obj *cache;
struct topo_obj *package;
DIR *dir;
struct dirent *entry;
int nodeid;
int packageid = 0;
unsigned int max_cache_index, cache_index, cache_stat;
/* skip offline cpus */
snprintf(new_path, PATH_MAX, "%s/online", path);
file = fopen(new_path, "r");
if (file) {
char *line = NULL;
size_t size = 0;
if (getline(&line, &size, file)==0)
return;
fclose(file);
if (line && line[0]=='0') {
free(line);
return;
}
free(line);
}
cpu = calloc(sizeof(struct topo_obj), 1);
if (!cpu)
return;
cpu->obj_type = OBJ_TYPE_CPU;
cpu->number = strtoul(&path[27], NULL, 10);
cpu_set(cpu->number, cpu_possible_map);
cpu_set(cpu->number, cpu->mask);
/*
* Default the cache_domain mask to be equal to the cpu
*/
cpus_clear(cache_mask);
cpu_set(cpu->number, cache_mask);
/* if the cpu is on the banned list, just don't add it */
if (cpus_intersects(cpu->mask, banned_cpus)) {
free(cpu);
/* even though we don't use the cpu we do need to count it */
core_count++;
return;
}
/* try to read the package mask; if it doesn't exist assume solitary */
snprintf(new_path, PATH_MAX, "%s/topology/core_siblings", path);
file = fopen(new_path, "r");
cpu_set(cpu->number, package_mask);
if (file) {
char *line = NULL;
size_t size = 0;
if (getline(&line, &size, file))
cpumask_parse_user(line, strlen(line), package_mask);
fclose(file);
free(line);
}
/* try to read the package id */
snprintf(new_path, PATH_MAX, "%s/topology/physical_package_id", path);
file = fopen(new_path, "r");
if (file) {
char *line = NULL;
size_t size = 0;
if (getline(&line, &size, file))
packageid = strtoul(line, NULL, 10);
fclose(file);
free(line);
}
/* try to read the cache mask; if it doesn't exist assume solitary */
/* We want the deepest cache level available */
cpu_set(cpu->number, cache_mask);
max_cache_index = 0;
cache_index = 1;
do {
struct stat sb;
snprintf(new_path, PATH_MAX, "%s/cache/index%d/shared_cpu_map", path, cache_index);
cache_stat = stat(new_path, &sb);
if (!cache_stat) {
max_cache_index = cache_index;
if (max_cache_index == deepest_cache)
break;
cache_index ++;
}
} while(!cache_stat);
if (max_cache_index > 0) {
snprintf(new_path, PATH_MAX, "%s/cache/index%d/shared_cpu_map", path, max_cache_index);
file = fopen(new_path, "r");
if (file) {
char *line = NULL;
size_t size = 0;
if (getline(&line, &size, file))
cpumask_parse_user(line, strlen(line), cache_mask);
fclose(file);
free(line);
}
}
nodeid=-1;
if (numa_avail) {
dir = opendir(path);
do {
entry = readdir(dir);
if (!entry)
break;
if (strstr(entry->d_name, "node")) {
nodeid = strtoul(&entry->d_name[4], NULL, 10);
break;
}
} while (entry);
closedir(dir);
}
/*
blank out the banned cpus from the various masks so that interrupts
will never be told to go there
*/
cpus_and(cache_mask, cache_mask, unbanned_cpus);
cpus_and(package_mask, package_mask, unbanned_cpus);
cache = add_cpu_to_cache_domain(cpu, cache_mask);
package = add_cache_domain_to_package(cache, packageid, package_mask);
add_package_to_node(package, nodeid);
cpu->obj_type_list = &cpus;
cpus = g_list_append(cpus, cpu);
core_count++;
}
static void dump_irq(struct irq_info *info, void *data)
{
int spaces = (long int)data;
int i;
char * indent = malloc (sizeof(char) * (spaces + 1));
for ( i = 0; i < spaces; i++ )
indent[i] = log_indent[0];
indent[i] = '\0';
log(TO_CONSOLE, LOG_INFO, "%sInterrupt %i node_num is %d (%s/%llu:%llu) \n", indent,
info->irq, irq_numa_node(info)->number, classes[info->class], info->load, (info->irq_count - info->last_irq_count));
free(indent);
}
static void dump_balance_obj(struct topo_obj *d, void *data __attribute__((unused)))
{
struct topo_obj *c = (struct topo_obj *)d;
log(TO_CONSOLE, LOG_INFO, "%s%s%s%sCPU number %i numa_node is %d (load %lu)\n",
log_indent, log_indent, log_indent, log_indent,
c->number, cpu_numa_node(c)->number , (unsigned long)c->load);
if (c->interrupts)
for_each_irq(c->interrupts, dump_irq, (void *)18);
}
static void dump_cache_domain(struct topo_obj *d, void *data)
{
char *buffer = data;
cpumask_scnprintf(buffer, 4095, d->mask);
log(TO_CONSOLE, LOG_INFO, "%s%sCache domain %i: numa_node is %d cpu mask is %s (load %lu) \n",
log_indent, log_indent,
d->number, cache_domain_numa_node(d)->number, buffer, (unsigned long)d->load);
if (d->children)
for_each_object(d->children, dump_balance_obj, NULL);
if (g_list_length(d->interrupts) > 0)
for_each_irq(d->interrupts, dump_irq, (void *)10);
}
static void dump_package(struct topo_obj *d, void *data)
{
char *buffer = data;
cpumask_scnprintf(buffer, 4096, d->mask);
log(TO_CONSOLE, LOG_INFO, "Package %i: numa_node is %d cpu mask is %s (load %lu)\n",
d->number, package_numa_node(d)->number, buffer, (unsigned long)d->load);
if (d->children)
for_each_object(d->children, dump_cache_domain, buffer);
if (g_list_length(d->interrupts) > 0)
for_each_irq(d->interrupts, dump_irq, (void *)2);
}
void dump_tree(void)
{
char buffer[4096];
for_each_object(packages, dump_package, buffer);
}
static void clear_irq_stats(struct irq_info *info, void *data __attribute__((unused)))
{
info->load = 0;
}
static void clear_obj_stats(struct topo_obj *d, void *data __attribute__((unused)))
{
for_each_object(d->children, clear_obj_stats, NULL);
for_each_irq(d->interrupts, clear_irq_stats, NULL);
}
/*
* this function removes previous state from the cpu tree, such as
* which level does how much work and the actual lists of interrupts
* assigned to each component
*/
void clear_work_stats(void)
{
for_each_object(numa_nodes, clear_obj_stats, NULL);
}
void parse_cpu_tree(void)
{
DIR *dir;
struct dirent *entry;
setup_banned_cpus();
cpus_complement(unbanned_cpus, banned_cpus);
dir = opendir("/sys/devices/system/cpu");
if (!dir)
return;
do {
int num;
char pad;
entry = readdir(dir);
/*
* We only want to count real cpus, not cpufreq and
* cpuidle
*/
if (entry &&
sscanf(entry->d_name, "cpu%d%c", &num, &pad) == 1 &&
!strchr(entry->d_name, ' ')) {
char new_path[PATH_MAX];
sprintf(new_path, "/sys/devices/system/cpu/%s", entry->d_name);
do_one_cpu(new_path);
}
} while (entry);
closedir(dir);
if (debug_mode)
dump_tree();
}
/*
* This function frees all memory related to a cpu tree so that a new tree
* can be read
*/
void clear_cpu_tree(void)
{
GList *item;
struct topo_obj *cpu;
struct topo_obj *cache_domain;
struct topo_obj *package;
while (packages) {
item = g_list_first(packages);
package = item->data;
g_list_free(package->children);
g_list_free(package->interrupts);
free(package);
packages = g_list_delete_link(packages, item);
}
package_count = 0;
while (cache_domains) {
item = g_list_first(cache_domains);
cache_domain = item->data;
g_list_free(cache_domain->children);
g_list_free(cache_domain->interrupts);
free(cache_domain);
cache_domains = g_list_delete_link(cache_domains, item);
}
cache_domain_count = 0;
while (cpus) {
item = g_list_first(cpus);
cpu = item->data;
g_list_free(cpu->interrupts);
free(cpu);
cpus = g_list_delete_link(cpus, item);
}
core_count = 0;
}
static gint compare_cpus(gconstpointer a, gconstpointer b)
{
const struct topo_obj *ai = a;
const struct topo_obj *bi = b;
return ai->number - bi->number;
}
struct topo_obj *find_cpu_core(int cpunr)
{
GList *entry;
struct topo_obj find;
find.number = cpunr;
entry = g_list_find_custom(cpus, &find, compare_cpus);
return entry ? entry->data : NULL;
}
int get_cpu_count(void)
{
return g_list_length(cpus);
}