open-keychain/OpenKeychain/src/main/java/org/sufficientlysecure/keychain/securitytoken/SecurityTokenConnection.java
2017-11-01 14:28:17 +00:00

1012 lines
39 KiB
Java

/*
* Copyright (C) 2016 Nikita Mikhailov <nikita.s.mikhailov@gmail.com>
* Copyright (C) 2013-2017 Dominik Schürmann <dominik@dominikschuermann.de>
* Copyright (C) 2015 Vincent Breitmoser <v.breitmoser@mugenguild.com>
* Copyright (C) 2013-2014 Signe Rüsch
* Copyright (C) 2013-2014 Philipp Jakubeit
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
package org.sufficientlysecure.keychain.securitytoken;
import android.content.Context;
import android.support.annotation.NonNull;
import android.support.annotation.VisibleForTesting;
import org.bouncycastle.asn1.ASN1Encodable;
import org.bouncycastle.asn1.ASN1Integer;
import org.bouncycastle.asn1.ASN1OutputStream;
import org.bouncycastle.asn1.DERSequence;
import org.bouncycastle.asn1.nist.NISTNamedCurves;
import org.bouncycastle.asn1.x9.X9ECParameters;
import org.bouncycastle.bcpg.HashAlgorithmTags;
import org.bouncycastle.jcajce.util.MessageDigestUtils;
import org.bouncycastle.math.ec.ECPoint;
import org.bouncycastle.openpgp.PGPException;
import org.bouncycastle.openpgp.operator.PGPPad;
import org.bouncycastle.openpgp.operator.jcajce.JcaKeyFingerprintCalculator;
import org.bouncycastle.util.Arrays;
import org.bouncycastle.util.encoders.Hex;
import org.sufficientlysecure.keychain.Constants;
import org.sufficientlysecure.keychain.pgp.CanonicalizedPublicKey;
import org.sufficientlysecure.keychain.pgp.CanonicalizedSecretKey;
import org.sufficientlysecure.keychain.pgp.exception.PgpGeneralException;
import javax.crypto.Cipher;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.spec.SecretKeySpec;
import org.sufficientlysecure.keychain.securitytoken.SecurityTokenInfo.TokenType;
import org.sufficientlysecure.keychain.securitytoken.SecurityTokenInfo.TransportType;
import org.sufficientlysecure.keychain.securitytoken.usb.UsbTransportException;
import org.sufficientlysecure.keychain.util.Log;
import org.sufficientlysecure.keychain.util.Passphrase;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.math.BigInteger;
import java.nio.ByteBuffer;
import java.security.InvalidKeyException;
import java.security.Key;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.security.interfaces.ECPrivateKey;
import java.security.interfaces.ECPublicKey;
import java.security.interfaces.RSAPrivateCrtKey;
import java.util.List;
/**
* This class provides a communication interface to OpenPGP applications on ISO SmartCard compliant
* devices.
* For the full specs, see http://g10code.com/docs/openpgp-card-2.0.pdf
*/
public class SecurityTokenConnection {
private static final int APDU_SW1_RESPONSE_AVAILABLE = 0x61;
private static final String AID_PREFIX_FIDESMO = "A000000617";
private static final byte[] BLANK_FINGERPRINT = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
private static SecurityTokenConnection sCachedInstance;
private final JcaKeyFingerprintCalculator fingerprintCalculator = new JcaKeyFingerprintCalculator();
@NonNull
private final Transport mTransport;
@NonNull
private final Passphrase mPin;
private final OpenPgpCommandApduFactory commandFactory;
private TokenType tokenType;
private CardCapabilities mCardCapabilities;
private OpenPgpCapabilities mOpenPgpCapabilities;
private SecureMessaging mSecureMessaging;
private boolean mPw1ValidatedForSignature;
private boolean mPw1ValidatedForDecrypt; // Mode 82 does other things; consider renaming?
private boolean mPw3Validated;
public static SecurityTokenConnection getInstanceForTransport(Transport transport, Passphrase pin) {
if (sCachedInstance == null || !sCachedInstance.isPersistentConnectionAllowed() ||
!sCachedInstance.isConnected() || !sCachedInstance.mTransport.equals(transport)) {
sCachedInstance = new SecurityTokenConnection(transport, pin, new OpenPgpCommandApduFactory());
}
return sCachedInstance;
}
@VisibleForTesting
SecurityTokenConnection(@NonNull Transport transport, @NonNull Passphrase pin,
OpenPgpCommandApduFactory commandFactory) {
this.mTransport = transport;
this.mPin = pin;
this.commandFactory = commandFactory;
}
private String getHolderName(byte[] name) {
try {
return (new String(name, 4, name[3])).replace('<', ' ');
} catch (IndexOutOfBoundsException e) {
// try-catch for https://github.com/FluffyKaon/OpenPGP-Card
// Note: This should not happen, but happens with
// https://github.com/FluffyKaon/OpenPGP-Card, thus return an empty string for now!
Log.e(Constants.TAG, "Couldn't get holder name, returning empty string!", e);
return "";
}
}
public void changeKey(CanonicalizedSecretKey secretKey, Passphrase passphrase, Passphrase adminPin) throws IOException {
long keyGenerationTimestamp = secretKey.getCreationTime().getTime() / 1000;
byte[] timestampBytes = ByteBuffer.allocate(4).putInt((int) keyGenerationTimestamp).array();
KeyType keyType = KeyType.from(secretKey);
if (keyType == null) {
throw new IOException("Inappropriate key flags for smart card key.");
}
// Slot is empty, or contains this key already. PUT KEY operation is safe
boolean canPutKey = isSlotEmpty(keyType)
|| keyMatchesFingerPrint(keyType, secretKey.getFingerprint());
if (!canPutKey) {
throw new IOException(String.format("Key slot occupied; card must be reset to put new %s key.",
keyType.toString()));
}
putKey(keyType, secretKey, passphrase, adminPin);
putData(adminPin, keyType.getFingerprintObjectId(), secretKey.getFingerprint());
putData(adminPin, keyType.getTimestampObjectId(), timestampBytes);
}
private boolean isSlotEmpty(KeyType keyType) throws IOException {
// Note: special case: This should not happen, but happens with
// https://github.com/FluffyKaon/OpenPGP-Card, thus for now assume true
if (getKeyFingerprint(keyType) == null) {
return true;
}
return keyMatchesFingerPrint(keyType, BLANK_FINGERPRINT);
}
private boolean keyMatchesFingerPrint(KeyType keyType, byte[] fingerprint) throws IOException {
return java.util.Arrays.equals(getKeyFingerprint(keyType), fingerprint);
}
public void connectIfNecessary(Context context) throws IOException {
if (isConnected()) {
return;
}
connectToDevice(context);
}
/**
* Connect to device and select pgp applet
*/
@VisibleForTesting
void connectToDevice(Context context) throws IOException {
// Connect on transport layer
mCardCapabilities = new CardCapabilities();
mTransport.connect();
determineTokenType();
CommandApdu select = commandFactory.createSelectFileOpenPgpCommand();
ResponseApdu response = communicate(select); // activate connection
if (!response.isSuccess()) {
throw new CardException("Initialization failed!", response.getSw());
}
refreshConnectionCapabilities();
mPw1ValidatedForSignature = false;
mPw1ValidatedForDecrypt = false;
mPw3Validated = false;
if (mOpenPgpCapabilities.isHasSCP11bSM()) {
try {
SCP11bSecureMessaging.establish(this, context, commandFactory);
} catch (SecureMessagingException e) {
mSecureMessaging = null;
Log.e(Constants.TAG, "failed to establish secure messaging", e);
}
}
}
@VisibleForTesting
void determineTokenType() throws IOException {
tokenType = mTransport.getTokenTypeIfAvailable();
if (tokenType != null) {
return;
}
CommandApdu selectFidesmoApdu = commandFactory.createSelectFileCommand(AID_PREFIX_FIDESMO);
if (communicate(selectFidesmoApdu).isSuccess()) {
tokenType = TokenType.FIDESMO;
return;
}
/* We could determine if this is a yubikey here. The info isn't used at the moment, so we save the roundtrip
// AID from https://github.com/Yubico/ykneo-oath/blob/master/build.xml#L16
CommandApdu selectYubicoApdu = commandFactory.createSelectFileCommand("A000000527200101");
if (communicate(selectYubicoApdu).isSuccess()) {
tokenType = TokenType.YUBIKEY_UNKNOWN;
return;
}
*/
tokenType = TokenType.UNKNOWN;
}
private void refreshConnectionCapabilities() throws IOException {
byte[] rawOpenPgpCapabilities = getData(0x00, 0x6E);
OpenPgpCapabilities openPgpCapabilities = new OpenPgpCapabilities(rawOpenPgpCapabilities);
setConnectionCapabilities(openPgpCapabilities);
}
@VisibleForTesting
void setConnectionCapabilities(OpenPgpCapabilities openPgpCapabilities) throws IOException {
this.mOpenPgpCapabilities = openPgpCapabilities;
this.mCardCapabilities = new CardCapabilities(openPgpCapabilities.getHistoricalBytes());
}
public void resetPin(byte[] newPin, Passphrase adminPin) throws IOException {
if (!mPw3Validated) {
verifyAdminPin(adminPin);
}
final int MAX_PW1_LENGTH_INDEX = 1;
byte[] pwStatusBytes = getPwStatusBytes();
if (newPin.length < 6 || newPin.length > pwStatusBytes[MAX_PW1_LENGTH_INDEX]) {
throw new IOException("Invalid PIN length");
}
// Command APDU for RESET RETRY COUNTER command (page 33)
CommandApdu changePin = commandFactory.createResetPw1Command(newPin);
ResponseApdu response = communicate(changePin);
if (!response.isSuccess()) {
throw new CardException("Failed to change PIN", response.getSw());
}
}
/**
* Modifies the user's PW3. Before sending, the new PIN will be validated for
* conformance to the token's requirements for key length.
*
* @param newAdminPin The new PW3.
*/
public void modifyPw3Pin(byte[] newAdminPin, Passphrase adminPin) throws IOException {
final int MAX_PW3_LENGTH_INDEX = 3;
byte[] pwStatusBytes = getPwStatusBytes();
if (newAdminPin.length < 8 || newAdminPin.length > pwStatusBytes[MAX_PW3_LENGTH_INDEX]) {
throw new IOException("Invalid PIN length");
}
byte[] pin = adminPin.toStringUnsafe().getBytes();
CommandApdu changePin = commandFactory.createChangePw3Command(pin, newAdminPin);
ResponseApdu response = communicate(changePin);
if (!response.isSuccess()) {
throw new CardException("Failed to change PIN", response.getSw());
}
}
/**
* Call DECIPHER command
*
* @param encryptedSessionKey the encoded session key
* @param publicKey
* @return the decoded session key
*/
public byte[] decryptSessionKey(@NonNull byte[] encryptedSessionKey,
CanonicalizedPublicKey publicKey)
throws IOException {
final KeyFormat kf = mOpenPgpCapabilities.getFormatForKeyType(KeyType.ENCRYPT);
if (!mPw1ValidatedForDecrypt) {
verifyPinForOther();
}
byte[] data;
byte[] dataLen;
int pLen = 0;
X9ECParameters x9Params;
switch (kf.keyFormatType()) {
case RSAKeyFormatType:
data = Arrays.copyOfRange(encryptedSessionKey, 2, encryptedSessionKey.length);
if (data[0] != 0) {
data = Arrays.prepend(data, (byte) 0x00);
}
break;
case ECKeyFormatType:
pLen = ((((encryptedSessionKey[0] & 0xff) << 8) + (encryptedSessionKey[1] & 0xff)) + 7) / 8;
data = new byte[pLen];
System.arraycopy(encryptedSessionKey, 2, data, 0, pLen);
final ECKeyFormat eckf = (ECKeyFormat) kf;
x9Params = NISTNamedCurves.getByOID(eckf.getCurveOID());
final ECPoint p = x9Params.getCurve().decodePoint(data);
if (!p.isValid()) {
throw new CardException("Invalid EC point!");
}
data = p.getEncoded(false);
if (data.length < 128) {
dataLen = new byte[]{(byte) data.length};
} else {
dataLen = new byte[]{(byte) 0x81, (byte) data.length};
}
data = Arrays.concatenate(Hex.decode("86"), dataLen, data);
if (data.length < 128) {
dataLen = new byte[]{(byte) data.length};
} else {
dataLen = new byte[]{(byte) 0x81, (byte) data.length};
}
data = Arrays.concatenate(Hex.decode("7F49"), dataLen, data);
if (data.length < 128) {
dataLen = new byte[]{(byte) data.length};
} else {
dataLen = new byte[]{(byte) 0x81, (byte) data.length};
}
data = Arrays.concatenate(Hex.decode("A6"), dataLen, data);
break;
default:
throw new CardException("Unknown encryption key type!");
}
CommandApdu command = commandFactory.createDecipherCommand(data);
ResponseApdu response = communicate(command);
if (!response.isSuccess()) {
throw new CardException("Deciphering with Security token failed on receive", response.getSw());
}
switch (mOpenPgpCapabilities.getFormatForKeyType(KeyType.ENCRYPT).keyFormatType()) {
case RSAKeyFormatType:
return response.getData();
/* From 3.x OpenPGP card specification :
In case of ECDH the card supports a partial decrypt only.
With its own private key and the given public key the card calculates a shared secret
in compliance with the Elliptic Curve Key Agreement Scheme from Diffie-Hellman.
The shared secret is returned in the response, all other calculation for deciphering
are done outside of the card.
The shared secret obtained is a KEK (Key Encryption Key) that is used to wrap the
session key.
From rfc6637#section-13 :
This document explicitly discourages the use of algorithms other than AES as a KEK algorithm.
*/
case ECKeyFormatType:
data = response.getData();
final byte[] keyEnc = new byte[encryptedSessionKey[pLen + 2]];
System.arraycopy(encryptedSessionKey, 2 + pLen + 1, keyEnc, 0, keyEnc.length);
try {
final MessageDigest kdf = MessageDigest.getInstance(MessageDigestUtils.getDigestName(publicKey.getSecurityTokenHashAlgorithm()));
kdf.update(new byte[]{(byte) 0, (byte) 0, (byte) 0, (byte) 1});
kdf.update(data);
kdf.update(publicKey.createUserKeyingMaterial(fingerprintCalculator));
final byte[] kek = kdf.digest();
final Cipher c = Cipher.getInstance("AESWrap");
c.init(Cipher.UNWRAP_MODE, new SecretKeySpec(kek, 0, publicKey.getSecurityTokenSymmetricKeySize() / 8, "AES"));
final Key paddedSessionKey = c.unwrap(keyEnc, "Session", Cipher.SECRET_KEY);
Arrays.fill(kek, (byte) 0);
return PGPPad.unpadSessionData(paddedSessionKey.getEncoded());
} catch (NoSuchAlgorithmException e) {
throw new CardException("Unknown digest/encryption algorithm!");
} catch (NoSuchPaddingException e) {
throw new CardException("Unknown padding algorithm!");
} catch (PGPException e) {
throw new CardException(e.getMessage());
} catch (InvalidKeyException e) {
throw new CardException("Invalid KEK!");
}
default:
throw new CardException("Unknown encryption key type!");
}
}
/**
* Verifies the user's PW1 with the appropriate mode.
*/
private void verifyPinForSignature() throws IOException {
byte[] pin = mPin.toStringUnsafe().getBytes();
ResponseApdu response = communicate(commandFactory.createVerifyPw1ForSignatureCommand(pin));
if (!response.isSuccess()) {
throw new CardException("Bad PIN!", response.getSw());
}
mPw1ValidatedForSignature = true;
}
/**
* Verifies the user's PW1 with the appropriate mode.
*/
private void verifyPinForOther() throws IOException {
byte[] pin = mPin.toStringUnsafe().getBytes();
// Command APDU for VERIFY command (page 32)
ResponseApdu response = communicate(commandFactory.createVerifyPw1ForOtherCommand(pin));
if (!response.isSuccess()) {
throw new CardException("Bad PIN!", response.getSw());
}
mPw1ValidatedForDecrypt = true;
}
/**
* Verifies the user's PW1 or PW3 with the appropriate mode.
*/
private void verifyAdminPin(Passphrase adminPin) throws IOException {
// Command APDU for VERIFY command (page 32)
ResponseApdu response =
communicate(commandFactory.createVerifyPw3Command(adminPin.toStringUnsafe().getBytes()));
if (!response.isSuccess()) {
throw new CardException("Bad PIN!", response.getSw());
}
mPw3Validated = true;
}
/**
* Stores a data object on the token. Automatically validates the proper PIN for the operation.
* Supported for all data objects < 255 bytes in length. Only the cardholder certificate
* (0x7F21) can exceed this length.
*
* @param dataObject The data object to be stored.
* @param data The data to store in the object
*/
private void putData(Passphrase adminPin, int dataObject, byte[] data) throws IOException {
if (data.length > 254) {
throw new IOException("Cannot PUT DATA with length > 254");
}
// TODO use admin pin regardless, if we have it?
if (dataObject == 0x0101 || dataObject == 0x0103) {
if (!mPw1ValidatedForDecrypt) {
verifyPinForOther();
}
} else if (!mPw3Validated) {
verifyAdminPin(adminPin);
}
CommandApdu command = commandFactory.createPutDataCommand(dataObject, data);
ResponseApdu response = communicate(command); // put data
if (!response.isSuccess()) {
throw new CardException("Failed to put data.", response.getSw());
}
}
private void setKeyAttributes(Passphrase adminPin, KeyType keyType, byte[] data) throws IOException {
if (!mOpenPgpCapabilities.isAttributesChangable()) {
return;
}
putData(adminPin, keyType.getAlgoAttributeSlot(), data);
refreshConnectionCapabilities();
}
/**
* Puts a key on the token in the given slot.
*
* @param slot The slot on the token where the key should be stored:
* 0xB6: Signature Key
* 0xB8: Decipherment Key
* 0xA4: Authentication Key
*/
private void putKey(KeyType slot, CanonicalizedSecretKey secretKey, Passphrase passphrase, Passphrase adminPin)
throws IOException {
RSAPrivateCrtKey crtSecretKey;
ECPrivateKey ecSecretKey;
ECPublicKey ecPublicKey;
if (!mPw3Validated) {
verifyAdminPin(adminPin);
}
// Now we're ready to communicate with the token.
byte[] keyBytes = null;
try {
secretKey.unlock(passphrase);
setKeyAttributes(adminPin, slot, SecurityTokenUtils.attributesFromSecretKey(slot, secretKey,
mOpenPgpCapabilities.getFormatForKeyType(slot)));
KeyFormat formatForKeyType = mOpenPgpCapabilities.getFormatForKeyType(slot);
switch (formatForKeyType.keyFormatType()) {
case RSAKeyFormatType:
if (!secretKey.isRSA()) {
throw new IOException("Security Token not configured for RSA key.");
}
crtSecretKey = secretKey.getSecurityTokenRSASecretKey();
// Should happen only rarely; all GnuPG keys since 2006 use public exponent 65537.
if (!crtSecretKey.getPublicExponent().equals(new BigInteger("65537"))) {
throw new IOException("Invalid public exponent for smart Security Token.");
}
keyBytes = SecurityTokenUtils.createRSAPrivKeyTemplate(crtSecretKey, slot,
(RSAKeyFormat) formatForKeyType);
break;
case ECKeyFormatType:
if (!secretKey.isEC()) {
throw new IOException("Security Token not configured for EC key.");
}
secretKey.unlock(passphrase);
ecSecretKey = secretKey.getSecurityTokenECSecretKey();
ecPublicKey = secretKey.getSecurityTokenECPublicKey();
keyBytes = SecurityTokenUtils.createECPrivKeyTemplate(ecSecretKey, ecPublicKey, slot,
(ECKeyFormat) formatForKeyType);
break;
default:
throw new IOException("Key type unsupported by security token.");
}
} catch (PgpGeneralException e) {
throw new IOException(e.getMessage());
}
CommandApdu apdu = commandFactory.createPutKeyCommand(keyBytes);
ResponseApdu response = communicate(apdu);
if (!response.isSuccess()) {
throw new CardException("Key export to Security Token failed", response.getSw());
}
}
/**
* Return fingerprints of all keys from application specific data stored
* on tag, or null if data not available.
*
* @return The fingerprints of all subkeys in a contiguous byte array.
*/
public byte[] getFingerprints() throws IOException {
return mOpenPgpCapabilities.getFingerprints();
}
/**
* Return the PW Status Bytes from the token. This is a simple DO; no TLV decoding needed.
*
* @return Seven bytes in fixed format, plus 0x9000 status word at the end.
*/
private byte[] getPwStatusBytes() throws IOException {
return mOpenPgpCapabilities.getPwStatusBytes();
}
public byte[] getAid() throws IOException {
return mOpenPgpCapabilities.getAid();
}
public String getUrl() throws IOException {
byte[] data = getData(0x5F, 0x50);
return new String(data).trim();
}
public String getUserId() throws IOException {
return getHolderName(getData(0x00, 0x65));
}
private byte[] getData(int p1, int p2) throws IOException {
ResponseApdu response = communicate(commandFactory.createGetDataCommand(p1, p2));
if (!response.isSuccess()) {
throw new CardException("Failed to get pw status bytes", response.getSw());
}
return response.getData();
}
private byte[] prepareDsi(byte[] hash, int hashAlgo) throws IOException {
byte[] dsi;
Log.i(Constants.TAG, "Hash: " + hashAlgo);
switch (hashAlgo) {
case HashAlgorithmTags.SHA1:
if (hash.length != 20) {
throw new IOException("Bad hash length (" + hash.length + ", expected 10!");
}
dsi = Arrays.concatenate(Hex.decode(
"3021" // Tag/Length of Sequence, the 0x21 includes all following 33 bytes
+ "3009" // Tag/Length of Sequence, the 0x09 are the following header bytes
+ "0605" + "2B0E03021A" // OID of SHA1
+ "0500" // TLV coding of ZERO
+ "0414"), hash); // 0x14 are 20 hash bytes
break;
case HashAlgorithmTags.RIPEMD160:
if (hash.length != 20) {
throw new IOException("Bad hash length (" + hash.length + ", expected 20!");
}
dsi = Arrays.concatenate(Hex.decode("3021300906052B2403020105000414"), hash);
break;
case HashAlgorithmTags.SHA224:
if (hash.length != 28) {
throw new IOException("Bad hash length (" + hash.length + ", expected 28!");
}
dsi = Arrays.concatenate(Hex.decode("302D300D06096086480165030402040500041C"), hash);
break;
case HashAlgorithmTags.SHA256:
if (hash.length != 32) {
throw new IOException("Bad hash length (" + hash.length + ", expected 32!");
}
dsi = Arrays.concatenate(Hex.decode("3031300D060960864801650304020105000420"), hash);
break;
case HashAlgorithmTags.SHA384:
if (hash.length != 48) {
throw new IOException("Bad hash length (" + hash.length + ", expected 48!");
}
dsi = Arrays.concatenate(Hex.decode("3041300D060960864801650304020205000430"), hash);
break;
case HashAlgorithmTags.SHA512:
if (hash.length != 64) {
throw new IOException("Bad hash length (" + hash.length + ", expected 64!");
}
dsi = Arrays.concatenate(Hex.decode("3051300D060960864801650304020305000440"), hash);
break;
default:
throw new IOException("Not supported hash algo!");
}
return dsi;
}
private byte[] prepareData(byte[] hash, int hashAlgo, KeyFormat keyFormat) throws IOException {
byte[] data;
switch (keyFormat.keyFormatType()) {
case RSAKeyFormatType:
data = prepareDsi(hash, hashAlgo);
break;
case ECKeyFormatType:
data = hash;
break;
default:
throw new IOException("Not supported key type!");
}
return data;
}
private byte[] encodeSignature(byte[] signature, KeyFormat keyFormat) throws IOException {
// Make sure the signature we received is actually the expected number of bytes long!
switch (keyFormat.keyFormatType()) {
case RSAKeyFormatType:
// no encoding necessary
int modulusLength = ((RSAKeyFormat) keyFormat).getModulusLength();
if (signature.length != (modulusLength / 8)) {
throw new IOException("Bad signature length! Expected " + (modulusLength / 8) +
" bytes, got " + signature.length);
}
break;
case ECKeyFormatType:
// "plain" encoding, see https://github.com/open-keychain/open-keychain/issues/2108
if (signature.length % 2 != 0) {
throw new IOException("Bad signature length!");
}
final byte[] br = new byte[signature.length / 2];
final byte[] bs = new byte[signature.length / 2];
for (int i = 0; i < br.length; ++i) {
br[i] = signature[i];
bs[i] = signature[br.length + i];
}
final ByteArrayOutputStream baos = new ByteArrayOutputStream();
ASN1OutputStream out = new ASN1OutputStream(baos);
out.writeObject(new DERSequence(new ASN1Encodable[]{new ASN1Integer(br), new ASN1Integer(bs)}));
out.flush();
signature = baos.toByteArray();
break;
}
return signature;
}
/**
* Call COMPUTE DIGITAL SIGNATURE command and returns the MPI value
*
* @param hash the hash for signing
* @return a big integer representing the MPI for the given hash
*/
public byte[] calculateSignature(byte[] hash, int hashAlgo) throws IOException {
if (!mPw1ValidatedForSignature) {
verifyPinForSignature();
}
KeyFormat signKeyFormat = mOpenPgpCapabilities.getFormatForKeyType(KeyType.SIGN);
byte[] data = prepareData(hash, hashAlgo, signKeyFormat);
// Command APDU for PERFORM SECURITY OPERATION: COMPUTE DIGITAL SIGNATURE (page 37)
CommandApdu command = commandFactory.createComputeDigitalSignatureCommand(data);
ResponseApdu response = communicate(command);
if (!response.isSuccess()) {
throw new CardException("Failed to sign", response.getSw());
}
if (!mOpenPgpCapabilities.isPw1ValidForMultipleSignatures()) {
mPw1ValidatedForSignature = false;
}
return encodeSignature(response.getData(), signKeyFormat);
}
/**
* Call INTERNAL AUTHENTICATE command and returns the MPI value
*
* @param hash the hash for signing
* @return a big integer representing the MPI for the given hash
*/
public byte[] calculateAuthenticationSignature(byte[] hash, int hashAlgo) throws IOException {
if (!mPw1ValidatedForDecrypt) {
verifyPinForOther();
}
KeyFormat authKeyFormat = mOpenPgpCapabilities.getFormatForKeyType(KeyType.AUTH);
byte[] data = prepareData(hash, hashAlgo, authKeyFormat);
// Command APDU for INTERNAL AUTHENTICATE (page 55)
CommandApdu command = commandFactory.createInternalAuthCommand(data);
ResponseApdu response = communicate(command);
if (!response.isSuccess()) {
throw new CardException("Failed to sign", response.getSw());
}
if (!mOpenPgpCapabilities.isPw1ValidForMultipleSignatures()) {
mPw1ValidatedForSignature = false;
}
return encodeSignature(response.getData(), authKeyFormat);
}
/**
* Transceives APDU
* Splits extended APDU into short APDUs and chains them if necessary
* Performs GET RESPONSE command(ISO/IEC 7816-4 par.7.6.1) on retrieving if necessary
*
* @param apdu short or extended APDU to transceive
* @return response from the card
* @throws IOException
*/
ResponseApdu communicate(CommandApdu apdu) throws IOException {
if ((mSecureMessaging != null) && mSecureMessaging.isEstablished()) {
try {
apdu = mSecureMessaging.encryptAndSign(apdu);
} catch (SecureMessagingException e) {
clearSecureMessaging();
throw new IOException("secure messaging encrypt/sign failure : " + e.getMessage());
}
}
ResponseApdu lastResponse = null;
// Transmit
if (mCardCapabilities.hasExtended()) {
lastResponse = mTransport.transceive(apdu);
} else if (commandFactory.isSuitableForShortApdu(apdu)) {
CommandApdu shortApdu = commandFactory.createShortApdu(apdu);
lastResponse = mTransport.transceive(shortApdu);
} else if (mCardCapabilities.hasChaining()) {
List<CommandApdu> chainedApdus = commandFactory.createChainedApdus(apdu);
for (int i = 0, totalCommands = chainedApdus.size(); i < totalCommands; i++) {
CommandApdu chainedApdu = chainedApdus.get(i);
lastResponse = mTransport.transceive(chainedApdu);
boolean isLastCommand = i < totalCommands - 1;
if (isLastCommand && !lastResponse.isSuccess()) {
throw new UsbTransportException("Failed to chain apdu (last SW: " + lastResponse.getSw() + ")");
}
}
}
if (lastResponse == null) {
throw new UsbTransportException("Can't transmit command");
}
ByteArrayOutputStream result = new ByteArrayOutputStream();
result.write(lastResponse.getData());
// Receive
while (lastResponse.getSw1() == APDU_SW1_RESPONSE_AVAILABLE) {
// GET RESPONSE ISO/IEC 7816-4 par.7.6.1
CommandApdu getResponse = commandFactory.createGetResponseCommand(lastResponse.getSw2());
lastResponse = mTransport.transceive(getResponse);
result.write(lastResponse.getData());
}
result.write(lastResponse.getSw1());
result.write(lastResponse.getSw2());
lastResponse = ResponseApdu.fromBytes(result.toByteArray());
if ((mSecureMessaging != null) && mSecureMessaging.isEstablished()) {
try {
lastResponse = mSecureMessaging.verifyAndDecrypt(lastResponse);
} catch (SecureMessagingException e) {
clearSecureMessaging();
throw new IOException("secure messaging verify/decrypt failure : " + e.getMessage());
}
}
return lastResponse;
}
/**
* Generates a key on the card in the given slot. If the slot is 0xB6 (the signature key),
* this command also has the effect of resetting the digital signature counter.
* NOTE: This does not set the key fingerprint data object! After calling this command, you
* must construct a public key packet using the returned public key data objects, compute the
* key fingerprint, and store it on the card using: putData(0xC8, key.getFingerprint())
*
* @param slot The slot on the card where the key should be generated:
* 0xB6: Signature Key
* 0xB8: Decipherment Key
* 0xA4: Authentication Key
* @return the public key data objects, in TLV format. For RSA this will be the public modulus
* (0x81) and exponent (0x82). These may come out of order; proper TLV parsing is required.
*/
public byte[] generateKey(Passphrase adminPin, int slot) throws IOException {
if (slot != 0xB6 && slot != 0xB8 && slot != 0xA4) {
throw new IOException("Invalid key slot");
}
if (!mPw3Validated) {
verifyAdminPin(adminPin);
}
CommandApdu apdu = commandFactory.createGenerateKeyCommand(slot);
ResponseApdu response = communicate(apdu);
if (!response.isSuccess()) {
throw new IOException("On-card key generation failed");
}
return response.getData();
}
/**
* Resets security token, which deletes all keys and data objects.
* This works by entering a wrong PIN and then Admin PIN 4 times respectively.
* Afterwards, the token is reactivated.
*/
public void resetAndWipeToken() throws IOException {
// try wrong PIN 4 times until counter goes to C0
byte[] pin = "XXXXXX".getBytes();
for (int i = 0; i <= 4; i++) {
// Command APDU for VERIFY command (page 32)
ResponseApdu response = communicate(commandFactory.createVerifyPw1ForSignatureCommand(pin));
if (response.isSuccess()) {
throw new CardException("Should never happen, XXXXXX has been accepted!", response.getSw());
}
}
// try wrong Admin PIN 4 times until counter goes to C0
byte[] adminPin = "XXXXXXXX".getBytes();
for (int i = 0; i <= 4; i++) {
// Command APDU for VERIFY command (page 32)
ResponseApdu response = communicate(commandFactory.createVerifyPw3Command(adminPin));
if (response.isSuccess()) { // Should NOT accept!
throw new CardException("Should never happen, XXXXXXXX has been accepted", response.getSw());
}
}
// secure messaging must be disabled before reactivation
clearSecureMessaging();
// reactivate token!
// NOTE: keep the order here! First execute _both_ reactivate commands. Before checking _both_ responses
// If a token is in a bad state and reactivate1 fails, it could still be reactivated with reactivate2
CommandApdu reactivate1 = commandFactory.createReactivate1Command();
CommandApdu reactivate2 = commandFactory.createReactivate2Command();
ResponseApdu response1 = communicate(reactivate1);
ResponseApdu response2 = communicate(reactivate2);
if (!response1.isSuccess()) {
throw new CardException("Reactivating failed!", response1.getSw());
}
if (!response2.isSuccess()) {
throw new CardException("Reactivating failed!", response2.getSw());
}
}
/**
* Return the fingerprint from application specific data stored on tag, or
* null if it doesn't exist.
*
* @param keyType key type
* @return The fingerprint of the requested key, or null if not found.
*/
public byte[] getKeyFingerprint(@NonNull KeyType keyType) throws IOException {
byte[] data = getFingerprints();
if (data == null) {
return null;
}
// return the master key fingerprint
ByteBuffer fpbuf = ByteBuffer.wrap(data);
byte[] fp = new byte[20];
fpbuf.position(keyType.getIdx() * 20);
fpbuf.get(fp, 0, 20);
return fp;
}
public boolean isPersistentConnectionAllowed() {
return mTransport.isPersistentConnectionAllowed() &&
(mSecureMessaging == null || !mSecureMessaging.isEstablished());
}
public boolean isConnected() {
return mTransport.isConnected();
}
public TokenType getTokenType() {
return tokenType;
}
public void clearSecureMessaging() {
if (mSecureMessaging != null) {
mSecureMessaging.clearSession();
}
mSecureMessaging = null;
}
void setSecureMessaging(final SecureMessaging sm) {
clearSecureMessaging();
mSecureMessaging = sm;
}
public SecurityTokenInfo getTokenInfo() throws IOException {
byte[] rawFingerprints = getFingerprints();
byte[][] fingerprints = new byte[rawFingerprints.length / 20][];
ByteBuffer buf = ByteBuffer.wrap(rawFingerprints);
for (int i = 0; i < rawFingerprints.length / 20; i++) {
fingerprints[i] = new byte[20];
buf.get(fingerprints[i]);
}
byte[] aid = getAid();
String userId = getUserId();
String url = getUrl();
byte[] pwInfo = getPwStatusBytes();
TransportType transportType = mTransport.getTransportType();
SecurityTokenInfo info = SecurityTokenInfo
.create(transportType, tokenType, fingerprints, aid, userId, url, pwInfo[4], pwInfo[6]);
if (! info.isSecurityTokenSupported()) {
throw new UnsupportedSecurityTokenException();
}
return info;
}
public static double parseOpenPgpVersion(final byte[] aid) {
float minv = aid[7];
while (minv > 0) minv /= 10.0;
return aid[6] + minv;
}
}