open-keychain/OpenKeychain/src/main/java/org/sufficientlysecure/keychain/ui/base/BaseNfcActivity.java
2015-06-29 20:48:11 +02:00

903 lines
35 KiB
Java

/*
* Copyright (C) 2015 Dominik Schürmann <dominik@dominikschuermann.de>
* Copyright (C) 2015 Vincent Breitmoser <v.breitmoser@mugenguild.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
package org.sufficientlysecure.keychain.ui.base;
import java.io.IOException;
import java.math.BigInteger;
import java.nio.ByteBuffer;
import java.security.interfaces.RSAPrivateCrtKey;
import android.app.Activity;
import android.app.PendingIntent;
import android.content.Intent;
import android.content.IntentFilter;
import android.nfc.NfcAdapter;
import android.nfc.Tag;
import android.nfc.tech.IsoDep;
import android.os.Bundle;
import android.widget.Toast;
import org.spongycastle.bcpg.HashAlgorithmTags;
import org.spongycastle.util.Arrays;
import org.spongycastle.util.encoders.Hex;
import org.sufficientlysecure.keychain.Constants;
import org.sufficientlysecure.keychain.R;
import org.sufficientlysecure.keychain.pgp.CanonicalizedSecretKey;
import org.sufficientlysecure.keychain.pgp.exception.PgpGeneralException;
import org.sufficientlysecure.keychain.pgp.exception.PgpKeyNotFoundException;
import org.sufficientlysecure.keychain.provider.CachedPublicKeyRing;
import org.sufficientlysecure.keychain.provider.KeychainContract.KeyRings;
import org.sufficientlysecure.keychain.provider.ProviderHelper;
import org.sufficientlysecure.keychain.service.PassphraseCacheService;
import org.sufficientlysecure.keychain.service.PassphraseCacheService.KeyNotFoundException;
import org.sufficientlysecure.keychain.service.input.CryptoInputParcel;
import org.sufficientlysecure.keychain.service.input.RequiredInputParcel;
import org.sufficientlysecure.keychain.ui.CreateKeyActivity;
import org.sufficientlysecure.keychain.ui.PassphraseDialogActivity;
import org.sufficientlysecure.keychain.ui.ViewKeyActivity;
import org.sufficientlysecure.keychain.ui.util.KeyFormattingUtils;
import org.sufficientlysecure.keychain.ui.util.Notify;
import org.sufficientlysecure.keychain.ui.util.Notify.Style;
import org.sufficientlysecure.keychain.util.Iso7816TLV;
import org.sufficientlysecure.keychain.util.Log;
import org.sufficientlysecure.keychain.util.Passphrase;
import org.sufficientlysecure.keychain.util.Preferences;
public abstract class BaseNfcActivity extends BaseActivity {
public static final int REQUEST_CODE_PIN = 1;
protected Passphrase mPin;
protected Passphrase mAdminPin;
protected boolean mPw1ValidForMultipleSignatures;
protected boolean mPw1ValidatedForSignature;
protected boolean mPw1ValidatedForDecrypt; // Mode 82 does other things; consider renaming?
protected boolean mPw3Validated;
private NfcAdapter mNfcAdapter;
private IsoDep mIsoDep;
private static final int TIMEOUT = 100000;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
Intent intent = getIntent();
String action = intent.getAction();
if (NfcAdapter.ACTION_TAG_DISCOVERED.equals(action)) {
throw new AssertionError("should not happen: NfcOperationActivity.onCreate is called instead of onNewIntent!");
}
}
/**
* This activity is started as a singleTop activity.
* All new NFC Intents which are delivered to this activity are handled here
*/
@Override
public void onNewIntent(Intent intent) {
if (NfcAdapter.ACTION_TAG_DISCOVERED.equals(intent.getAction())) {
try {
handleNdefDiscoveredIntent(intent);
} catch (CardException e) {
handleNfcError(e);
} catch (IOException e) {
handleNfcError(e);
}
}
}
public void handleNfcError(IOException e) {
Log.e(Constants.TAG, "nfc error", e);
Notify.create(this, getString(R.string.error_nfc, e.getMessage()), Style.WARN).show();
}
public void handleNfcError(CardException e) {
Log.e(Constants.TAG, "card error", e);
short status = e.getResponseCode();
// When entering a PIN, a status of 63CX indicates X attempts remaining.
if ((status & (short)0xFFF0) == 0x63C0) {
Notify.create(this, getString(R.string.error_pin, status & 0x000F), Style.WARN).show();
return;
}
// Otherwise, all status codes are fixed values.
switch (status) {
// These errors should not occur in everyday use; if they are returned, it means we
// made a mistake sending data to the card, or the card is misbehaving.
case 0x6A80: {
Notify.create(this, getString(R.string.error_nfc_bad_data), Style.WARN).show();
break;
}
case 0x6883: {
Notify.create(this, getString(R.string.error_nfc_chaining_error), Style.WARN).show();
break;
}
case 0x6B00: {
Notify.create(this, getString(R.string.error_nfc_header, "P1/P2"), Style.WARN).show();
break;
}
case 0x6D00: {
Notify.create(this, getString(R.string.error_nfc_header, "INS"), Style.WARN).show();
break;
}
case 0x6E00: {
Notify.create(this, getString(R.string.error_nfc_header, "CLA"), Style.WARN).show();
break;
}
// These error conditions are more likely to be experienced by an end user.
case 0x6285: {
Notify.create(this, getString(R.string.error_nfc_terminated), Style.WARN).show();
break;
}
case 0x6700: {
Notify.create(this, getString(R.string.error_nfc_wrong_length), Style.WARN).show();
break;
}
case 0x6982: {
Notify.create(this, getString(R.string.error_nfc_security_not_satisfied),
Style.WARN).show();
break;
}
case 0x6983: {
Notify.create(this, getString(R.string.error_nfc_authentication_blocked),
Style.WARN).show();
break;
}
case 0x6985: {
Notify.create(this, getString(R.string.error_nfc_conditions_not_satisfied),
Style.WARN).show();
break;
}
// 6A88 is "Not Found" in the spec, but Yubikey also returns 6A83 for this in some cases.
case 0x6A88:
case 0x6A83: {
Notify.create(this, getString(R.string.error_nfc_data_not_found), Style.WARN).show();
break;
}
// 6F00 is a JavaCard proprietary status code, SW_UNKNOWN, and usually represents an
// unhandled exception on the smart card.
case 0x6F00: {
Notify.create(this, getString(R.string.error_nfc_unknown), Style.WARN).show();
break;
}
default:
Notify.create(this, getString(R.string.error_nfc, e.getMessage()), Style.WARN).show();
}
}
public void handlePinError() {
toast("Wrong PIN!");
setResult(RESULT_CANCELED);
finish();
}
/**
* Called when the system is about to start resuming a previous activity,
* disables NFC Foreground Dispatch
*/
public void onPause() {
super.onPause();
Log.d(Constants.TAG, "BaseNfcActivity.onPause");
disableNfcForegroundDispatch();
}
/**
* Called when the activity will start interacting with the user,
* enables NFC Foreground Dispatch
*/
public void onResume() {
super.onResume();
Log.d(Constants.TAG, "BaseNfcActivity.onResume");
enableNfcForegroundDispatch();
}
protected void obtainYubiKeyPin(RequiredInputParcel requiredInput) {
// shortcut if we only use the default yubikey pin
Preferences prefs = Preferences.getPreferences(this);
if (prefs.useDefaultYubiKeyPin()) {
mPin = new Passphrase("123456");
return;
}
try {
Passphrase phrase = PassphraseCacheService.getCachedPassphrase(this,
requiredInput.getMasterKeyId(), requiredInput.getSubKeyId());
if (phrase != null) {
mPin = phrase;
return;
}
Intent intent = new Intent(this, PassphraseDialogActivity.class);
intent.putExtra(PassphraseDialogActivity.EXTRA_REQUIRED_INPUT,
RequiredInputParcel.createRequiredPassphrase(requiredInput));
startActivityForResult(intent, REQUEST_CODE_PIN);
} catch (KeyNotFoundException e) {
throw new AssertionError(
"tried to find passphrase for non-existing key. this is a programming error!");
}
}
protected void setYubiKeyPin(Passphrase pin) {
mPin = pin;
}
@Override
protected void onActivityResult(int requestCode, int resultCode, Intent data) {
switch (requestCode) {
case REQUEST_CODE_PIN: {
if (resultCode != Activity.RESULT_OK) {
setResult(resultCode);
finish();
return;
}
CryptoInputParcel input = data.getParcelableExtra(PassphraseDialogActivity.RESULT_CRYPTO_INPUT);
mPin = input.getPassphrase();
break;
}
default:
super.onActivityResult(requestCode, resultCode, data);
}
}
/** Handle NFC communication and return a result.
*
* This method is called by onNewIntent above upon discovery of an NFC tag.
* It handles initialization and login to the application, subsequently
* calls either nfcCalculateSignature() or nfcDecryptSessionKey(), then
* finishes the activity with an appropriate result.
*
* On general communication, see also
* http://www.cardwerk.com/smartcards/smartcard_standard_ISO7816-4_annex-a.aspx
*
* References to pages are generally related to the OpenPGP Application
* on ISO SmartCard Systems specification.
*
*/
protected void handleNdefDiscoveredIntent(Intent intent) throws IOException {
Tag detectedTag = intent.getParcelableExtra(NfcAdapter.EXTRA_TAG);
// Connect to the detected tag, setting a couple of settings
mIsoDep = IsoDep.get(detectedTag);
mIsoDep.setTimeout(TIMEOUT); // timeout is set to 100 seconds to avoid cancellation during calculation
mIsoDep.connect();
// SW1/2 0x9000 is the generic "ok" response, which we expect most of the time.
// See specification, page 51
String accepted = "9000";
// Command APDU (page 51) for SELECT FILE command (page 29)
String opening =
"00" // CLA
+ "A4" // INS
+ "04" // P1
+ "00" // P2
+ "06" // Lc (number of bytes)
+ "D27600012401" // Data (6 bytes)
+ "00"; // Le
String response = nfcCommunicate(opening); // activate connection
if ( ! response.endsWith(accepted) ) {
throw new CardException("Initialization failed!", parseCardStatus(response));
}
byte[] pwStatusBytes = nfcGetPwStatusBytes();
mPw1ValidForMultipleSignatures = (pwStatusBytes[0] == 1);
mPw1ValidatedForSignature = false;
mPw1ValidatedForDecrypt = false;
mPw3Validated = false;
// TODO: Handle non-default Admin PIN
mAdminPin = new Passphrase("12345678");
onNfcPerform();
mIsoDep.close();
mIsoDep = null;
}
protected void onNfcPerform() throws IOException {
final byte[] nfcFingerprints = nfcGetFingerprints();
final String nfcUserId = nfcGetUserId();
final byte[] nfcAid = nfcGetAid();
final long subKeyId = KeyFormattingUtils.getKeyIdFromFingerprint(nfcFingerprints);
try {
CachedPublicKeyRing ring = new ProviderHelper(this).getCachedPublicKeyRing(
KeyRings.buildUnifiedKeyRingsFindBySubkeyUri(subKeyId));
long masterKeyId = ring.getMasterKeyId();
Intent intent = new Intent(this, ViewKeyActivity.class);
intent.setData(KeyRings.buildGenericKeyRingUri(masterKeyId));
intent.putExtra(ViewKeyActivity.EXTRA_NFC_AID, nfcAid);
intent.putExtra(ViewKeyActivity.EXTRA_NFC_USER_ID, nfcUserId);
intent.putExtra(ViewKeyActivity.EXTRA_NFC_FINGERPRINTS, nfcFingerprints);
startActivity(intent);
} catch (PgpKeyNotFoundException e) {
Intent intent = new Intent(this, CreateKeyActivity.class);
intent.putExtra(CreateKeyActivity.EXTRA_NFC_AID, nfcAid);
intent.putExtra(CreateKeyActivity.EXTRA_NFC_USER_ID, nfcUserId);
intent.putExtra(CreateKeyActivity.EXTRA_NFC_FINGERPRINTS, nfcFingerprints);
startActivity(intent);
}
}
/** Return the key id from application specific data stored on tag, or null
* if it doesn't exist.
*
* @param idx Index of the key to return the fingerprint from.
* @return The long key id of the requested key, or null if not found.
*/
public Long nfcGetKeyId(int idx) throws IOException {
byte[] fp = nfcGetFingerprint(idx);
if (fp == null) {
return null;
}
ByteBuffer buf = ByteBuffer.wrap(fp);
// skip first 12 bytes of the fingerprint
buf.position(12);
// the last eight bytes are the key id (big endian, which is default order in ByteBuffer)
return buf.getLong();
}
/** Return fingerprints of all keys from application specific data stored
* on tag, or null if data not available.
*
* @return The fingerprints of all subkeys in a contiguous byte array.
*/
public byte[] nfcGetFingerprints() throws IOException {
String data = "00CA006E00";
byte[] buf = mIsoDep.transceive(Hex.decode(data));
Iso7816TLV tlv = Iso7816TLV.readSingle(buf, true);
Log.d(Constants.TAG, "nfc tlv data:\n" + tlv.prettyPrint());
Iso7816TLV fptlv = Iso7816TLV.findRecursive(tlv, 0xc5);
if (fptlv == null) {
return null;
}
return fptlv.mV;
}
/** Return the PW Status Bytes from the card. This is a simple DO; no TLV decoding needed.
*
* @return Seven bytes in fixed format, plus 0x9000 status word at the end.
*/
public byte[] nfcGetPwStatusBytes() throws IOException {
String data = "00CA00C400";
return mIsoDep.transceive(Hex.decode(data));
}
/** Return the fingerprint from application specific data stored on tag, or
* null if it doesn't exist.
*
* @param idx Index of the key to return the fingerprint from.
* @return The fingerprint of the requested key, or null if not found.
*/
public byte[] nfcGetFingerprint(int idx) throws IOException {
byte[] data = nfcGetFingerprints();
// return the master key fingerprint
ByteBuffer fpbuf = ByteBuffer.wrap(data);
byte[] fp = new byte[20];
fpbuf.position(idx * 20);
fpbuf.get(fp, 0, 20);
return fp;
}
public byte[] nfcGetAid() throws IOException {
String info = "00CA004F00";
return mIsoDep.transceive(Hex.decode(info));
}
public String nfcGetUserId() throws IOException {
String info = "00CA006500";
return nfcGetHolderName(nfcCommunicate(info));
}
/**
* Calls to calculate the signature and returns the MPI value
*
* @param hash the hash for signing
* @return a big integer representing the MPI for the given hash
*/
public byte[] nfcCalculateSignature(byte[] hash, int hashAlgo) throws IOException {
if (!mPw1ValidatedForSignature) {
nfcVerifyPIN(0x81); // (Verify PW1 with mode 81 for signing)
}
// dsi, including Lc
String dsi;
Log.i(Constants.TAG, "Hash: " + hashAlgo);
switch (hashAlgo) {
case HashAlgorithmTags.SHA1:
if (hash.length != 20) {
throw new IOException("Bad hash length (" + hash.length + ", expected 10!");
}
dsi = "23" // Lc
+ "3021" // Tag/Length of Sequence, the 0x21 includes all following 33 bytes
+ "3009" // Tag/Length of Sequence, the 0x09 are the following header bytes
+ "0605" + "2B0E03021A" // OID of SHA1
+ "0500" // TLV coding of ZERO
+ "0414" + getHex(hash); // 0x14 are 20 hash bytes
break;
case HashAlgorithmTags.RIPEMD160:
if (hash.length != 20) {
throw new IOException("Bad hash length (" + hash.length + ", expected 20!");
}
dsi = "233021300906052B2403020105000414" + getHex(hash);
break;
case HashAlgorithmTags.SHA224:
if (hash.length != 28) {
throw new IOException("Bad hash length (" + hash.length + ", expected 28!");
}
dsi = "2F302D300D06096086480165030402040500041C" + getHex(hash);
break;
case HashAlgorithmTags.SHA256:
if (hash.length != 32) {
throw new IOException("Bad hash length (" + hash.length + ", expected 32!");
}
dsi = "333031300D060960864801650304020105000420" + getHex(hash);
break;
case HashAlgorithmTags.SHA384:
if (hash.length != 48) {
throw new IOException("Bad hash length (" + hash.length + ", expected 48!");
}
dsi = "433041300D060960864801650304020205000430" + getHex(hash);
break;
case HashAlgorithmTags.SHA512:
if (hash.length != 64) {
throw new IOException("Bad hash length (" + hash.length + ", expected 64!");
}
dsi = "533051300D060960864801650304020305000440" + getHex(hash);
break;
default:
throw new IOException("Not supported hash algo!");
}
// Command APDU for PERFORM SECURITY OPERATION: COMPUTE DIGITAL SIGNATURE (page 37)
String apdu =
"002A9E9A" // CLA, INS, P1, P2
+ dsi // digital signature input
+ "00"; // Le
String response = nfcCommunicate(apdu);
// split up response into signature and status
String status = response.substring(response.length()-4);
String signature = response.substring(0, response.length() - 4);
// while we are getting 0x61 status codes, retrieve more data
while (status.substring(0, 2).equals("61")) {
Log.d(Constants.TAG, "requesting more data, status " + status);
// Send GET RESPONSE command
response = nfcCommunicate("00C00000" + status.substring(2));
status = response.substring(response.length()-4);
signature += response.substring(0, response.length()-4);
}
Log.d(Constants.TAG, "final response:" + status);
if (!mPw1ValidForMultipleSignatures) {
mPw1ValidatedForSignature = false;
}
if ( ! "9000".equals(status)) {
throw new CardException("Bad NFC response code: " + status, parseCardStatus(response));
}
// Make sure the signature we received is actually the expected number of bytes long!
if (signature.length() != 256 && signature.length() != 512) {
throw new IOException("Bad signature length! Expected 128 or 256 bytes, got " + signature.length() / 2);
}
return Hex.decode(signature);
}
/**
* Calls to calculate the signature and returns the MPI value
*
* @param encryptedSessionKey the encoded session key
* @return the decoded session key
*/
public byte[] nfcDecryptSessionKey(byte[] encryptedSessionKey) throws IOException {
if (!mPw1ValidatedForDecrypt) {
nfcVerifyPIN(0x82); // (Verify PW1 with mode 82 for decryption)
}
String firstApdu = "102a8086fe";
String secondApdu = "002a808603";
String le = "00";
byte[] one = new byte[254];
// leave out first byte:
System.arraycopy(encryptedSessionKey, 1, one, 0, one.length);
byte[] two = new byte[encryptedSessionKey.length - 1 - one.length];
for (int i = 0; i < two.length; i++) {
two[i] = encryptedSessionKey[i + one.length + 1];
}
String first = nfcCommunicate(firstApdu + getHex(one));
String second = nfcCommunicate(secondApdu + getHex(two) + le);
String decryptedSessionKey = nfcGetDataField(second);
Log.d(Constants.TAG, "decryptedSessionKey: " + decryptedSessionKey);
return Hex.decode(decryptedSessionKey);
}
/** Verifies the user's PW1 or PW3 with the appropriate mode.
*
* @param mode For PW1, this is 0x81 for signing, 0x82 for everything else.
* For PW3 (Admin PIN), mode is 0x83.
*/
public void nfcVerifyPIN(int mode) throws IOException {
if (mPin != null || mode == 0x83) {
byte[] pin;
if (mode == 0x83) {
pin = new String(mAdminPin.getCharArray()).getBytes();
} else {
pin = new String(mPin.getCharArray()).getBytes();
}
// SW1/2 0x9000 is the generic "ok" response, which we expect most of the time.
// See specification, page 51
String accepted = "9000";
// Command APDU for VERIFY command (page 32)
String login =
"00" // CLA
+ "20" // INS
+ "00" // P1
+ String.format("%02x", mode) // P2
+ String.format("%02x", pin.length) // Lc
+ Hex.toHexString(pin);
String response = nfcCommunicate(login); // login
if (!response.equals(accepted)) {
handlePinError();
throw new CardException("Bad PIN!", parseCardStatus(response));
}
if (mode == 0x81) {
mPw1ValidatedForSignature = true;
} else if (mode == 0x82) {
mPw1ValidatedForDecrypt = true;
} else if (mode == 0x83) {
mPw3Validated = true;
}
}
}
/** Modifies the user's PW1 or PW3. Before sending, the new PIN will be validated for
* conformance to the card's requirements for key length.
*
* @param pw For PW1, this is 0x81. For PW3 (Admin PIN), mode is 0x83.
* @param newPinString The new PW1 or PW3.
*/
public void nfcModifyPIN(int pw, String newPinString) throws IOException {
final int MAX_PW1_LENGTH_INDEX = 1;
final int MAX_PW3_LENGTH_INDEX = 3;
byte[] pwStatusBytes = nfcGetPwStatusBytes();
byte[] newPin = newPinString.getBytes();
if (pw == 0x81) {
if (newPin.length < 6 || newPin.length > pwStatusBytes[MAX_PW1_LENGTH_INDEX]) {
throw new IOException("Invalid PIN length");
}
} else if (pw == 0x83) {
if (newPin.length < 8 || newPin.length > pwStatusBytes[MAX_PW3_LENGTH_INDEX]) {
throw new IOException("Invalid PIN length");
}
} else {
throw new IOException("Invalid PW index for modify PIN operation");
}
byte[] pin;
if (pw == 0x83) {
pin = new String(mAdminPin.getCharArray()).getBytes();
} else {
pin = new String(mPin.getCharArray()).getBytes();
}
// Command APDU for CHANGE REFERENCE DATA command (page 32)
String changeReferenceDataApdu = "00" // CLA
+ "24" // INS
+ "00" // P1
+ String.format("%02x", pw) // P2
+ String.format("%02x", pin.length + newPin.length) // Lc
+ getHex(pin)
+ getHex(newPin);
String response = nfcCommunicate(changeReferenceDataApdu); // change PIN
if (!response.equals("9000")) {
handlePinError();
throw new CardException("Failed to change PIN", parseCardStatus(response));
}
}
/**
* Stores a data object on the card. Automatically validates the proper PIN for the operation.
* Supported for all data objects < 255 bytes in length. Only the cardholder certificate
* (0x7F21) can exceed this length.
*
* @param dataObject The data object to be stored.
* @param data The data to store in the object
*/
public void nfcPutData(int dataObject, byte[] data) throws IOException {
if (data.length > 254) {
throw new IOException("Cannot PUT DATA with length > 254");
}
if (dataObject == 0x0101 || dataObject == 0x0103) {
if (!mPw1ValidatedForDecrypt) {
nfcVerifyPIN(0x82); // (Verify PW1 for non-signing operations)
}
} else if (!mPw3Validated) {
nfcVerifyPIN(0x83); // (Verify PW3)
}
String putDataApdu = "00" // CLA
+ "DA" // INS
+ String.format("%02x", (dataObject & 0xFF00) >> 8) // P1
+ String.format("%02x", dataObject & 0xFF) // P2
+ String.format("%02x", data.length) // Lc
+ getHex(data);
String response = nfcCommunicate(putDataApdu); // put data
if (!response.equals("9000")) {
throw new CardException("Failed to put data.", parseCardStatus(response));
}
}
/**
* Puts a key on the card in the given slot.
*
* @param slot The slot on the card where the key should be stored:
* 0xB6: Signature Key
* 0xB8: Decipherment Key
* 0xA4: Authentication Key
*/
public void nfcPutKey(int slot, CanonicalizedSecretKey secretKey, Passphrase passphrase)
throws IOException {
if (slot != 0xB6 && slot != 0xB8 && slot != 0xA4) {
throw new IOException("Invalid key slot");
}
RSAPrivateCrtKey crtSecretKey = null;
try {
secretKey.unlock(passphrase);
crtSecretKey = secretKey.getCrtSecretKey();
} catch (PgpGeneralException e) {
throw new IOException(e.getMessage());
}
// Shouldn't happen; the UI should block the user from getting an incompatible key this far.
if (crtSecretKey.getModulus().bitLength() > 2048) {
throw new IOException("Key too large to export to smart card.");
}
// Should happen only rarely; all GnuPG keys since 2006 use public exponent 65537.
if (!crtSecretKey.getPublicExponent().equals(new BigInteger("65537"))) {
throw new IOException("Invalid public exponent for smart card key.");
}
if (!mPw3Validated) {
nfcVerifyPIN(0x83); // (Verify PW1 with mode 83)
}
byte[] header= Hex.decode(
"4D82" + "03A2" // Extended header list 4D82, length of 930 bytes. (page 23)
+ String.format("%02x", slot) + "00" // CRT to indicate targeted key, no length
+ "7F48" + "15" // Private key template 0x7F48, length 21 (decimal, 0x15 hex)
+ "9103" // Public modulus, length 3
+ "928180" // Prime P, length 128
+ "938180" // Prime Q, length 128
+ "948180" // Coefficient (1/q mod p), length 128
+ "958180" // Prime exponent P (d mod (p - 1)), length 128
+ "968180" // Prime exponent Q (d mod (1 - 1)), length 128
+ "97820100" // Modulus, length 256, last item in private key template
+ "5F48" + "820383");// DO 5F48; 899 bytes of concatenated key data will follow
byte[] dataToSend = new byte[934];
byte[] currentKeyObject;
int offset = 0;
System.arraycopy(header, 0, dataToSend, offset, header.length);
offset += header.length;
currentKeyObject = crtSecretKey.getPublicExponent().toByteArray();
System.arraycopy(currentKeyObject, 0, dataToSend, offset, 3);
offset += 3;
// NOTE: For a 2048-bit key, these lengths are fixed. However, bigint includes a leading 0
// in the array to represent sign, so we take care to set the offset to 1 if necessary.
currentKeyObject = crtSecretKey.getPrimeP().toByteArray();
System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
Arrays.fill(currentKeyObject, (byte)0);
offset += 128;
currentKeyObject = crtSecretKey.getPrimeQ().toByteArray();
System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
Arrays.fill(currentKeyObject, (byte)0);
offset += 128;
currentKeyObject = crtSecretKey.getCrtCoefficient().toByteArray();
System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
Arrays.fill(currentKeyObject, (byte)0);
offset += 128;
currentKeyObject = crtSecretKey.getPrimeExponentP().toByteArray();
System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
Arrays.fill(currentKeyObject, (byte)0);
offset += 128;
currentKeyObject = crtSecretKey.getPrimeExponentQ().toByteArray();
System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
Arrays.fill(currentKeyObject, (byte)0);
offset += 128;
currentKeyObject = crtSecretKey.getModulus().toByteArray();
System.arraycopy(currentKeyObject, currentKeyObject.length - 256, dataToSend, offset, 256);
String putKeyCommand = "10DB3FFF";
String lastPutKeyCommand = "00DB3FFF";
// Now we're ready to communicate with the card.
offset = 0;
String response;
while(offset < dataToSend.length) {
int dataRemaining = dataToSend.length - offset;
if (dataRemaining > 254) {
response = nfcCommunicate(
putKeyCommand + "FE" + Hex.toHexString(dataToSend, offset, 254)
);
offset += 254;
} else {
int length = dataToSend.length - offset;
response = nfcCommunicate(
lastPutKeyCommand + String.format("%02x", length)
+ Hex.toHexString(dataToSend, offset, length));
offset += length;
}
if (!response.endsWith("9000")) {
throw new CardException("Key export to card failed", parseCardStatus(response));
}
}
// Clear array with secret data before we return.
Arrays.fill(dataToSend, (byte) 0);
}
/**
* Parses out the status word from a JavaCard response string.
*
* @param response A hex string with the response from the card
* @return A short indicating the SW1/SW2, or 0 if a status could not be determined.
*/
short parseCardStatus(String response) {
if (response.length() < 4) {
return 0; // invalid input
}
try {
return Short.parseShort(response.substring(response.length() - 4), 16);
} catch (NumberFormatException e) {
return 0;
}
}
/**
* Prints a message to the screen
*
* @param text the text which should be contained within the toast
*/
protected void toast(String text) {
Toast.makeText(this, text, Toast.LENGTH_LONG).show();
}
/**
* Receive new NFC Intents to this activity only by enabling foreground dispatch.
* This can only be done in onResume!
*/
public void enableNfcForegroundDispatch() {
mNfcAdapter = NfcAdapter.getDefaultAdapter(this);
if (mNfcAdapter == null) {
return;
}
Intent nfcI = new Intent(this, getClass())
.addFlags(Intent.FLAG_ACTIVITY_SINGLE_TOP | Intent.FLAG_ACTIVITY_CLEAR_TOP);
PendingIntent nfcPendingIntent = PendingIntent.getActivity(this, 0, nfcI, PendingIntent.FLAG_CANCEL_CURRENT);
IntentFilter[] writeTagFilters = new IntentFilter[]{
new IntentFilter(NfcAdapter.ACTION_TAG_DISCOVERED)
};
// https://code.google.com/p/android/issues/detail?id=62918
// maybe mNfcAdapter.enableReaderMode(); ?
try {
mNfcAdapter.enableForegroundDispatch(this, nfcPendingIntent, writeTagFilters, null);
} catch (IllegalStateException e) {
Log.i(Constants.TAG, "NfcForegroundDispatch Error!", e);
}
Log.d(Constants.TAG, "NfcForegroundDispatch has been enabled!");
}
/**
* Disable foreground dispatch in onPause!
*/
public void disableNfcForegroundDispatch() {
if (mNfcAdapter == null) {
return;
}
mNfcAdapter.disableForegroundDispatch(this);
Log.d(Constants.TAG, "NfcForegroundDispatch has been disabled!");
}
public String nfcGetHolderName(String name) {
String slength;
int ilength;
name = name.substring(6);
slength = name.substring(0, 2);
ilength = Integer.parseInt(slength, 16) * 2;
name = name.substring(2, ilength + 2);
name = (new String(Hex.decode(name))).replace('<', ' ');
return (name);
}
private String nfcGetDataField(String output) {
return output.substring(0, output.length() - 4);
}
public String nfcCommunicate(String apdu) throws IOException {
return getHex(mIsoDep.transceive(Hex.decode(apdu)));
}
public static String getHex(byte[] raw) {
return new String(Hex.encode(raw));
}
public class CardException extends IOException {
private short mResponseCode;
public CardException(String detailMessage, short responseCode) {
super(detailMessage);
mResponseCode = responseCode;
}
public short getResponseCode() {
return mResponseCode;
}
}
}