# PyTorch-Optimized Configuration # Specialized configuration for PyTorch deep learning workloads version: "1.0.0" name: "PyTorch Deep Learning Optimization" description: "Highly optimized configuration for PyTorch training and inference" author: "PyTorch Team" tags: ["pytorch", "deep_learning", "training", "inference"] settings: default_strategy: "pytorch_aware" max_concurrent_rules: 6 confidence_threshold: 0.7 adaptive_learning: true metrics_collection: true rules: - id: "pytorch_model_loading" name: "PyTorch Model Loading Optimization" description: "Optimized loading for PyTorch model files (.pth, .pt)" priority: 100 conditions: - type: "file_pattern" property: "extension" operator: "in" value: [".pth", ".pt"] weight: 1.0 - type: "workload_context" property: "framework" operator: "equals" value: "pytorch" weight: 0.9 actions: - type: "pytorch_model_cache" target: "file" parameters: lazy_loading: true state_dict_optimization: true device_placement: "auto" memory_format: "channels_last" - id: "pytorch_dataloader_optimization" name: "PyTorch DataLoader Optimization" description: "Optimize PyTorch DataLoader performance" priority: 95 conditions: - type: "workload_context" property: "workload_type" operator: "equals" value: "training" weight: 1.0 - type: "workload_context" property: "framework" operator: "equals" value: "pytorch" weight: 1.0 actions: - type: "dataloader_optimization" target: "dataset" parameters: num_workers: 8 pin_memory: true persistent_workers: true prefetch_factor: 4 multiprocessing_context: "spawn" - id: "pytorch_checkpoint_handling" name: "PyTorch Checkpoint Optimization" description: "Efficient handling of PyTorch training checkpoints" priority: 90 conditions: - type: "file_pattern" property: "name_pattern" operator: "matches" value: ".*checkpoint.*\\.(pth|pt)$" weight: 1.0 - type: "workload_context" property: "workload_type" operator: "equals" value: "training" weight: 0.9 actions: - type: "checkpoint_optimization" target: "file" parameters: incremental_save: true async_save: true compression: "lz4" metadata_tracking: true templates: - id: "pytorch_training_optimized" name: "PyTorch Training (Optimized)" description: "Maximum performance for PyTorch training workloads" category: "training" rules: - "pytorch_model_loading" - "pytorch_dataloader_optimization" - "pytorch_checkpoint_handling" parameters: torch_compile: true mixed_precision: "fp16" gradient_checkpointing: false dataloader_config: batch_size: "auto" shuffle: true drop_last: true optimizer_config: type: "AdamW" fused: true foreach: true - id: "pytorch_inference_optimized" name: "PyTorch Inference (Optimized)" description: "Low-latency PyTorch inference" category: "inference" rules: - "pytorch_model_loading" parameters: torch_compile: true inference_mode: true no_grad: true jit_trace: false precision: "fp16" frameworks: pytorch: enabled: true version: "2.0+" rules: - "pytorch_model_loading" - "pytorch_dataloader_optimization" - "pytorch_checkpoint_handling" parameters: device_optimization: true cuda_optimizations: true memory_efficiency: true compilation_cache: true metadata: pytorch_version: "2.0+" cuda_version: "11.8+" recommended_hardware: - "NVIDIA A100" - "NVIDIA V100" - "NVIDIA RTX 4090" optimized_for: - "transformer_models" - "computer_vision" - "nlp_tasks" - "multi_gpu_training" benchmarks: training_speedup: "15-30%" inference_latency: "-20-40%" memory_efficiency: "+10-25%"