package topology import ( "errors" "fmt" "github.com/seaweedfs/seaweedfs/weed/stats" "math/rand" "sync" "sync/atomic" "time" "github.com/seaweedfs/seaweedfs/weed/storage/types" "github.com/seaweedfs/seaweedfs/weed/glog" "github.com/seaweedfs/seaweedfs/weed/storage" "github.com/seaweedfs/seaweedfs/weed/storage/needle" "github.com/seaweedfs/seaweedfs/weed/storage/super_block" ) type copyState int const ( noCopies copyState = 0 + iota insufficientCopies enoughCopies ) type volumeState string const ( readOnlyState volumeState = "ReadOnly" oversizedState = "Oversized" crowdedState = "Crowded" ) type stateIndicator func(copyState) bool func ExistCopies() stateIndicator { return func(state copyState) bool { return state != noCopies } } func NoCopies() stateIndicator { return func(state copyState) bool { return state == noCopies } } type volumesBinaryState struct { rp *super_block.ReplicaPlacement name volumeState // the name for volume state (eg. "Readonly", "Oversized") indicator stateIndicator // indicate whether the volumes should be marked as `name` copyMap map[needle.VolumeId]*VolumeLocationList } func NewVolumesBinaryState(name volumeState, rp *super_block.ReplicaPlacement, indicator stateIndicator) *volumesBinaryState { return &volumesBinaryState{ rp: rp, name: name, indicator: indicator, copyMap: make(map[needle.VolumeId]*VolumeLocationList), } } func (v *volumesBinaryState) Dump() (res []uint32) { for vid, list := range v.copyMap { if v.indicator(v.copyState(list)) { res = append(res, uint32(vid)) } } return } func (v *volumesBinaryState) IsTrue(vid needle.VolumeId) bool { list, _ := v.copyMap[vid] return v.indicator(v.copyState(list)) } func (v *volumesBinaryState) Add(vid needle.VolumeId, dn *DataNode) { list, _ := v.copyMap[vid] if list != nil { list.Set(dn) return } list = NewVolumeLocationList() list.Set(dn) v.copyMap[vid] = list } func (v *volumesBinaryState) Remove(vid needle.VolumeId, dn *DataNode) { list, _ := v.copyMap[vid] if list != nil { list.Remove(dn) if list.Length() == 0 { delete(v.copyMap, vid) } } } func (v *volumesBinaryState) copyState(list *VolumeLocationList) copyState { if list == nil { return noCopies } if list.Length() < v.rp.GetCopyCount() { return insufficientCopies } return enoughCopies } // mapping from volume to its locations, inverted from server to volume type VolumeLayout struct { growRequestCount int32 rp *super_block.ReplicaPlacement ttl *needle.TTL diskType types.DiskType vid2location map[needle.VolumeId]*VolumeLocationList writables []needle.VolumeId // transient array of writable volume id crowded map[needle.VolumeId]struct{} readonlyVolumes *volumesBinaryState // readonly volumes oversizedVolumes *volumesBinaryState // oversized volumes vacuumedVolumes map[needle.VolumeId]time.Time volumeSizeLimit uint64 replicationAsMin bool accessLock sync.RWMutex } type VolumeLayoutStats struct { TotalSize uint64 UsedSize uint64 FileCount uint64 } func NewVolumeLayout(rp *super_block.ReplicaPlacement, ttl *needle.TTL, diskType types.DiskType, volumeSizeLimit uint64, replicationAsMin bool) *VolumeLayout { return &VolumeLayout{ rp: rp, ttl: ttl, diskType: diskType, vid2location: make(map[needle.VolumeId]*VolumeLocationList), writables: *new([]needle.VolumeId), crowded: make(map[needle.VolumeId]struct{}), readonlyVolumes: NewVolumesBinaryState(readOnlyState, rp, ExistCopies()), oversizedVolumes: NewVolumesBinaryState(oversizedState, rp, ExistCopies()), vacuumedVolumes: make(map[needle.VolumeId]time.Time), volumeSizeLimit: volumeSizeLimit, replicationAsMin: replicationAsMin, } } func (vl *VolumeLayout) String() string { return fmt.Sprintf("rp:%v, ttl:%v, writables:%v, volumeSizeLimit:%v", vl.rp, vl.ttl, vl.writables, vl.volumeSizeLimit) } func (vl *VolumeLayout) RegisterVolume(v *storage.VolumeInfo, dn *DataNode) { vl.accessLock.Lock() defer vl.accessLock.Unlock() defer vl.rememberOversizedVolume(v, dn) if _, ok := vl.vid2location[v.Id]; !ok { vl.vid2location[v.Id] = NewVolumeLocationList() } vl.vid2location[v.Id].Set(dn) // glog.V(4).Infof("volume %d added to %s len %d copy %d", v.Id, dn.Id(), vl.vid2location[v.Id].Length(), v.ReplicaPlacement.GetCopyCount()) for _, dn := range vl.vid2location[v.Id].list { if vInfo, err := dn.GetVolumesById(v.Id); err == nil { if vInfo.ReadOnly { glog.V(1).Infof("vid %d removed from writable", v.Id) vl.removeFromWritable(v.Id) vl.readonlyVolumes.Add(v.Id, dn) return } else { vl.readonlyVolumes.Remove(v.Id, dn) } } else { glog.V(1).Infof("vid %d removed from writable", v.Id) vl.removeFromWritable(v.Id) vl.readonlyVolumes.Remove(v.Id, dn) return } } } func (vl *VolumeLayout) rememberOversizedVolume(v *storage.VolumeInfo, dn *DataNode) { if vl.isOversized(v) { vl.oversizedVolumes.Add(v.Id, dn) } else { vl.oversizedVolumes.Remove(v.Id, dn) } } func (vl *VolumeLayout) UnRegisterVolume(v *storage.VolumeInfo, dn *DataNode) { vl.accessLock.Lock() defer vl.accessLock.Unlock() // remove from vid2location map location, ok := vl.vid2location[v.Id] if !ok { return } if location.Remove(dn) { vl.readonlyVolumes.Remove(v.Id, dn) vl.oversizedVolumes.Remove(v.Id, dn) vl.ensureCorrectWritables(v.Id) if location.Length() == 0 { delete(vl.vid2location, v.Id) } } } func (vl *VolumeLayout) EnsureCorrectWritables(v *storage.VolumeInfo) { vl.accessLock.Lock() defer vl.accessLock.Unlock() vl.ensureCorrectWritables(v.Id) } func (vl *VolumeLayout) ensureCorrectWritables(vid needle.VolumeId) { if vl.enoughCopies(vid) && vl.isAllWritable(vid) { if !vl.oversizedVolumes.IsTrue(vid) { vl.setVolumeWritable(vid) } } else { if !vl.enoughCopies(vid) { glog.V(0).Infof("volume %d does not have enough copies", vid) } if !vl.isAllWritable(vid) { glog.V(0).Infof("volume %d are not all writable", vid) } glog.V(0).Infof("volume %d remove from writable", vid) vl.removeFromWritable(vid) } } func (vl *VolumeLayout) isAllWritable(vid needle.VolumeId) bool { if location, ok := vl.vid2location[vid]; ok { for _, dn := range location.list { if v, getError := dn.GetVolumesById(vid); getError == nil { if v.ReadOnly { return false } } } } else { return false } return true } func (vl *VolumeLayout) isOversized(v *storage.VolumeInfo) bool { return uint64(v.Size) >= vl.volumeSizeLimit } func (vl *VolumeLayout) isWritable(v *storage.VolumeInfo) bool { return !vl.isOversized(v) && v.Version == needle.CurrentVersion && !v.ReadOnly } func (vl *VolumeLayout) isEmpty() bool { vl.accessLock.RLock() defer vl.accessLock.RUnlock() return len(vl.vid2location) == 0 } func (vl *VolumeLayout) Lookup(vid needle.VolumeId) []*DataNode { vl.accessLock.RLock() defer vl.accessLock.RUnlock() if location := vl.vid2location[vid]; location != nil { return location.list } return nil } func (vl *VolumeLayout) ListVolumeServers() (nodes []*DataNode) { vl.accessLock.RLock() defer vl.accessLock.RUnlock() for _, location := range vl.vid2location { nodes = append(nodes, location.list...) } return } func (vl *VolumeLayout) PickForWrite(count uint64, option *VolumeGrowOption) (vid needle.VolumeId, counter uint64, locationList *VolumeLocationList, shouldGrow bool, err error) { vl.accessLock.RLock() defer vl.accessLock.RUnlock() lenWriters := len(vl.writables) if lenWriters <= 0 { //glog.V(0).Infoln("No more writable volumes!") shouldGrow = true return 0, 0, nil, shouldGrow, errors.New("No more writable volumes!") } if option.DataCenter == "" && option.Rack == "" && option.DataNode == "" { vid := vl.writables[rand.Intn(lenWriters)] locationList = vl.vid2location[vid] if locationList != nil && locationList.Length() > 0 { // check whether picked file is close to full dn := locationList.Head() info, _ := dn.GetVolumesById(vid) if float64(info.Size) > float64(vl.volumeSizeLimit)*VolumeGrowStrategy.Threshold { shouldGrow = true } return vid, count, locationList.Copy(), shouldGrow, nil } return 0, 0, nil, shouldGrow, errors.New("Strangely vid " + vid.String() + " is on no machine!") } // clone vl.writables writables := make([]needle.VolumeId, len(vl.writables)) copy(writables, vl.writables) // randomize the writables rand.Shuffle(len(writables), func(i, j int) { writables[i], writables[j] = writables[j], writables[i] }) for _, writableVolumeId := range writables { volumeLocationList := vl.vid2location[writableVolumeId] for _, dn := range volumeLocationList.list { if option.DataCenter != "" && dn.GetDataCenter().Id() != NodeId(option.DataCenter) { continue } if option.Rack != "" && dn.GetRack().Id() != NodeId(option.Rack) { continue } if option.DataNode != "" && dn.Id() != NodeId(option.DataNode) { continue } vid, locationList = writableVolumeId, volumeLocationList.Copy() // check whether picked file is close to full info, _ := dn.GetVolumesById(writableVolumeId) if float64(info.Size) > float64(vl.volumeSizeLimit)*VolumeGrowStrategy.Threshold { shouldGrow = true } counter = count return } } return vid, count, locationList, true, fmt.Errorf("No writable volumes in DataCenter:%v Rack:%v DataNode:%v", option.DataCenter, option.Rack, option.DataNode) } func (vl *VolumeLayout) HasGrowRequest() bool { return atomic.LoadInt32(&vl.growRequestCount) > 0 } func (vl *VolumeLayout) AddGrowRequest() { atomic.AddInt32(&vl.growRequestCount, 1) } func (vl *VolumeLayout) DoneGrowRequest() { atomic.AddInt32(&vl.growRequestCount, -1) } func (vl *VolumeLayout) ShouldGrowVolumes(option *VolumeGrowOption) bool { total, active, crowded := vl.GetActiveVolumeCount(option) stats.MasterVolumeLayout.WithLabelValues(option.Collection, option.ReplicaPlacement.String(), "total").Set(float64(total)) stats.MasterVolumeLayout.WithLabelValues(option.Collection, option.ReplicaPlacement.String(), "active").Set(float64(active)) stats.MasterVolumeLayout.WithLabelValues(option.Collection, option.ReplicaPlacement.String(), "crowded").Set(float64(crowded)) //glog.V(0).Infof("active volume: %d, high usage volume: %d\n", active, high) return active <= crowded } func (vl *VolumeLayout) GetActiveVolumeCount(option *VolumeGrowOption) (total, active, crowded int) { vl.accessLock.RLock() defer vl.accessLock.RUnlock() if option.DataCenter == "" { return len(vl.writables), len(vl.writables), len(vl.crowded) } total = len(vl.writables) for _, v := range vl.writables { for _, dn := range vl.vid2location[v].list { if dn.GetDataCenter().Id() == NodeId(option.DataCenter) { if option.Rack != "" && dn.GetRack().Id() != NodeId(option.Rack) { continue } if option.DataNode != "" && dn.Id() != NodeId(option.DataNode) { continue } active++ info, _ := dn.GetVolumesById(v) if float64(info.Size) > float64(vl.volumeSizeLimit)* VolumeGrowStrategy.Threshold{ crowded++ } } } } return } func (vl *VolumeLayout) removeFromWritable(vid needle.VolumeId) bool { toDeleteIndex := -1 for k, id := range vl.writables { if id == vid { toDeleteIndex = k break } } if toDeleteIndex >= 0 { glog.V(0).Infoln("Volume", vid, "becomes unwritable") vl.writables = append(vl.writables[0:toDeleteIndex], vl.writables[toDeleteIndex+1:]...) vl.removeFromCrowded(vid) return true } return false } func (vl *VolumeLayout) setVolumeWritable(vid needle.VolumeId) bool { for _, v := range vl.writables { if v == vid { return false } } glog.V(0).Infoln("Volume", vid, "becomes writable") vl.writables = append(vl.writables, vid) return true } func (vl *VolumeLayout) SetVolumeReadOnly(dn *DataNode, vid needle.VolumeId) bool { vl.accessLock.Lock() defer vl.accessLock.Unlock() if _, ok := vl.vid2location[vid]; ok { vl.readonlyVolumes.Add(vid, dn) return vl.removeFromWritable(vid) } return true } func (vl *VolumeLayout) SetVolumeWritable(dn *DataNode, vid needle.VolumeId) bool { vl.accessLock.Lock() defer vl.accessLock.Unlock() if _, ok := vl.vid2location[vid]; ok { vl.readonlyVolumes.Remove(vid, dn) } if vl.enoughCopies(vid) { return vl.setVolumeWritable(vid) } return false } func (vl *VolumeLayout) SetVolumeUnavailable(dn *DataNode, vid needle.VolumeId) bool { vl.accessLock.Lock() defer vl.accessLock.Unlock() if location, ok := vl.vid2location[vid]; ok { if location.Remove(dn) { vl.readonlyVolumes.Remove(vid, dn) vl.oversizedVolumes.Remove(vid, dn) if location.Length() < vl.rp.GetCopyCount() { glog.V(0).Infoln("Volume", vid, "has", location.Length(), "replica, less than required", vl.rp.GetCopyCount()) return vl.removeFromWritable(vid) } } } return false } func (vl *VolumeLayout) SetVolumeAvailable(dn *DataNode, vid needle.VolumeId, isReadOnly, isFullCapacity bool) bool { vl.accessLock.Lock() defer vl.accessLock.Unlock() vInfo, err := dn.GetVolumesById(vid) if err != nil { return false } vl.vid2location[vid].Set(dn) if vInfo.ReadOnly || isReadOnly || isFullCapacity { return false } if vl.enoughCopies(vid) { return vl.setVolumeWritable(vid) } return false } func (vl *VolumeLayout) enoughCopies(vid needle.VolumeId) bool { locations := vl.vid2location[vid].Length() desired := vl.rp.GetCopyCount() return locations == desired || (vl.replicationAsMin && locations > desired) } func (vl *VolumeLayout) SetVolumeCapacityFull(vid needle.VolumeId) bool { vl.accessLock.Lock() defer vl.accessLock.Unlock() wasWritable := vl.removeFromWritable(vid) if wasWritable { glog.V(0).Infof("Volume %d reaches full capacity.", vid) } return wasWritable } func (vl *VolumeLayout) removeFromCrowded(vid needle.VolumeId) { delete(vl.crowded, vid) } func (vl *VolumeLayout) setVolumeCrowded(vid needle.VolumeId) { if _, ok := vl.crowded[vid]; !ok { vl.crowded[vid] = struct{}{} glog.V(0).Infoln("Volume", vid, "becomes crowded") } } func (vl *VolumeLayout) SetVolumeCrowded(vid needle.VolumeId) { // since delete is guarded by accessLock.Lock(), // and is always called in sequential order, // RLock() should be safe enough vl.accessLock.RLock() defer vl.accessLock.RUnlock() for _, v := range vl.writables { if v == vid { vl.setVolumeCrowded(vid) break } } } type VolumeLayoutInfo struct { Replication string `json:"replication"` TTL string `json:"ttl"` Writables []needle.VolumeId `json:"writables"` Collection string `json:"collection"` DiskType string `json:"diskType"` } func (vl *VolumeLayout) ToInfo() (info VolumeLayoutInfo) { info.Replication = vl.rp.String() info.TTL = vl.ttl.String() info.Writables = vl.writables info.DiskType = vl.diskType.ReadableString() //m["locations"] = vl.vid2location return } func (vl *VolumeLayout) Stats() *VolumeLayoutStats { vl.accessLock.RLock() defer vl.accessLock.RUnlock() ret := &VolumeLayoutStats{} freshThreshold := time.Now().Unix() - 60 for vid, vll := range vl.vid2location { size, fileCount := vll.Stats(vid, freshThreshold) ret.FileCount += uint64(fileCount) ret.UsedSize += size * uint64(vll.Length()) if vl.readonlyVolumes.IsTrue(vid) { ret.TotalSize += size * uint64(vll.Length()) } else { ret.TotalSize += vl.volumeSizeLimit * uint64(vll.Length()) } } return ret }