mirror of
https://github.com/chrislusf/seaweedfs
synced 2025-09-10 05:12:47 +02:00
813 lines
24 KiB
Go
813 lines
24 KiB
Go
package ml
|
|
|
|
import (
|
|
"fmt"
|
|
"sync"
|
|
"time"
|
|
|
|
"github.com/seaweedfs/seaweedfs/weed/glog"
|
|
)
|
|
|
|
// BatchAccessPattern represents different batch access patterns
|
|
type BatchAccessPattern int
|
|
|
|
const (
|
|
BatchPatternUnknown BatchAccessPattern = iota
|
|
BatchPatternLinear // Linear batch processing
|
|
BatchPatternStrided // Strided access with fixed gaps
|
|
BatchPatternShuffled // Randomized batch order
|
|
BatchPatternHierarchical // Hierarchical/nested batch access
|
|
BatchPatternMultiGPU // Multi-GPU distributed batches
|
|
BatchPatternPipelined // Pipelined batch processing
|
|
)
|
|
|
|
// BatchAccess represents a single file access that's part of batch processing
|
|
type BatchAccess struct {
|
|
Offset int64 // File offset
|
|
Size int // Access size
|
|
AccessTime time.Time // When accessed
|
|
IsRead bool // Whether this was a read operation
|
|
BatchHint string // Optional batch identifier hint
|
|
}
|
|
|
|
// BatchInfo holds information about a detected batch
|
|
type BatchInfo struct {
|
|
sync.RWMutex
|
|
|
|
// Batch identification
|
|
BatchID string // Unique batch identifier
|
|
StartOffset int64 // Starting file offset
|
|
EndOffset int64 // Ending file offset
|
|
Size int64 // Total batch size in bytes
|
|
ItemCount int // Number of items in batch
|
|
ItemSize int64 // Average item size
|
|
|
|
// Access pattern
|
|
AccessPattern BatchAccessPattern // Detected access pattern
|
|
AccessOrder []int64 // Order of access within batch
|
|
AccessTimes []time.Time // When each item was accessed
|
|
ProcessingTime time.Duration // Total time to process batch
|
|
|
|
// Performance metrics
|
|
LoadTime time.Duration // Time to load batch from storage
|
|
ProcessTime time.Duration // Time to process batch (compute)
|
|
TotalTime time.Duration // Total end-to-end time
|
|
Throughput float64 // Items per second
|
|
|
|
// Optimization state
|
|
IsPrefetched bool // Whether batch was prefetched
|
|
CacheHitRate float64 // Percentage of cache hits
|
|
OptimalPrefetch int64 // Recommended prefetch size
|
|
|
|
// Relationship to other batches
|
|
PreviousBatch *BatchInfo // Previous batch in sequence
|
|
NextBatch *BatchInfo // Next batch in sequence
|
|
ParentBatch *BatchInfo // Parent batch (for hierarchical)
|
|
ChildBatches []*BatchInfo // Child batches (for hierarchical)
|
|
}
|
|
|
|
// BatchOptimizer optimizes batch access patterns for ML workloads
|
|
type BatchOptimizer struct {
|
|
sync.RWMutex
|
|
|
|
// Configuration
|
|
maxBatchesTracked int // Maximum number of batches to track
|
|
batchDetectionWindow int // Window size for batch detection
|
|
minBatchSize int64 // Minimum size to consider as batch
|
|
maxBatchSize int64 // Maximum size to consider as batch
|
|
|
|
// Batch tracking
|
|
activeBatches map[string]*BatchInfo // Currently active batches
|
|
completedBatches map[string]*BatchInfo // Recently completed batches
|
|
inodeToBatches map[uint64][]*BatchInfo // File to batches mapping
|
|
|
|
// Pattern detection
|
|
accessHistory map[uint64][]BatchAccess // Recent access history per file
|
|
batchSequences map[uint64]*BatchSequence // Detected batch sequences
|
|
|
|
// Optimization strategies
|
|
prefetchStrategies map[BatchAccessPattern]*PrefetchConfig // Prefetch configs per pattern
|
|
cacheStrategies map[BatchAccessPattern]*CacheConfig // Cache configs per pattern
|
|
|
|
// Statistics
|
|
totalBatchesDetected int64 // Total batches detected
|
|
optimizationHits int64 // Successful optimization applications
|
|
optimizationMisses int64 // Failed optimization attempts
|
|
|
|
// Background processing
|
|
cleanupTicker *time.Ticker // Cleanup timer
|
|
stopCleanup chan struct{} // Cleanup stop signal
|
|
}
|
|
|
|
// BatchSequence represents a sequence of related batches
|
|
type BatchSequence struct {
|
|
sync.RWMutex
|
|
|
|
SequenceID string // Unique sequence identifier
|
|
Batches []*BatchInfo // Batches in sequence
|
|
Pattern BatchAccessPattern // Overall sequence pattern
|
|
StartTime time.Time // When sequence started
|
|
LastAccess time.Time // Last access in sequence
|
|
IsComplete bool // Whether sequence is complete
|
|
RepeatCount int // How many times sequence has repeated
|
|
|
|
// Predictions
|
|
NextBatchOffset int64 // Predicted next batch offset
|
|
NextBatchSize int64 // Predicted next batch size
|
|
Confidence float64 // Confidence in predictions (0-1)
|
|
}
|
|
|
|
// PrefetchConfig holds configuration for prefetching strategies
|
|
type PrefetchConfig struct {
|
|
Strategy PrefetchStrategy // Which prefetch strategy to use
|
|
LookaheadCount int // How many items to prefetch ahead
|
|
PrefetchSize int64 // Size to prefetch per operation
|
|
ConcurrencyLevel int // How many concurrent prefetch operations
|
|
AdaptiveScaling bool // Whether to scale based on performance
|
|
}
|
|
|
|
// CacheConfig holds configuration for caching strategies
|
|
type CacheConfig struct {
|
|
Policy CachePolicy // Which cache policy to use
|
|
RetentionTime time.Duration // How long to keep items cached
|
|
Priority CachePriority // Cache priority level
|
|
PreloadBatches int // How many batches to preload
|
|
}
|
|
|
|
// NewBatchOptimizer creates a new batch optimizer
|
|
func NewBatchOptimizer() *BatchOptimizer {
|
|
bo := &BatchOptimizer{
|
|
maxBatchesTracked: 1000, // Track up to 1000 batches
|
|
batchDetectionWindow: 100, // Look at last 100 accesses
|
|
minBatchSize: 64 * 1024, // Minimum 64KB batch
|
|
maxBatchSize: 100 * 1024 * 1024, // Maximum 100MB batch
|
|
|
|
activeBatches: make(map[string]*BatchInfo),
|
|
completedBatches: make(map[string]*BatchInfo),
|
|
inodeToBatches: make(map[uint64][]*BatchInfo),
|
|
accessHistory: make(map[uint64][]BatchAccess),
|
|
batchSequences: make(map[uint64]*BatchSequence),
|
|
|
|
prefetchStrategies: make(map[BatchAccessPattern]*PrefetchConfig),
|
|
cacheStrategies: make(map[BatchAccessPattern]*CacheConfig),
|
|
|
|
stopCleanup: make(chan struct{}),
|
|
}
|
|
|
|
// Initialize default strategies
|
|
bo.initializeDefaultStrategies()
|
|
|
|
// Start cleanup routine
|
|
bo.cleanupTicker = time.NewTicker(5 * time.Minute)
|
|
go bo.cleanupRoutine()
|
|
|
|
glog.V(1).Infof("Batch optimizer initialized")
|
|
return bo
|
|
}
|
|
|
|
// initializeDefaultStrategies sets up default optimization strategies for each pattern
|
|
func (bo *BatchOptimizer) initializeDefaultStrategies() {
|
|
// Linear batch pattern - aggressive prefetching
|
|
bo.prefetchStrategies[BatchPatternLinear] = &PrefetchConfig{
|
|
Strategy: PrefetchAggressive,
|
|
LookaheadCount: 5,
|
|
PrefetchSize: 2 * 1024 * 1024, // 2MB
|
|
ConcurrencyLevel: 3,
|
|
AdaptiveScaling: true,
|
|
}
|
|
bo.cacheStrategies[BatchPatternLinear] = &CacheConfig{
|
|
Policy: CachePolicyTrainingAware,
|
|
RetentionTime: 10 * time.Minute,
|
|
Priority: CachePriorityHigh,
|
|
PreloadBatches: 2,
|
|
}
|
|
|
|
// Shuffled batch pattern - conservative prefetching
|
|
bo.prefetchStrategies[BatchPatternShuffled] = &PrefetchConfig{
|
|
Strategy: PrefetchBalanced,
|
|
LookaheadCount: 2,
|
|
PrefetchSize: 512 * 1024, // 512KB
|
|
ConcurrencyLevel: 2,
|
|
AdaptiveScaling: true,
|
|
}
|
|
bo.cacheStrategies[BatchPatternShuffled] = &CacheConfig{
|
|
Policy: CachePolicyLRU,
|
|
RetentionTime: 5 * time.Minute,
|
|
Priority: CachePriorityNormal,
|
|
PreloadBatches: 1,
|
|
}
|
|
|
|
// Multi-GPU pattern - high concurrency
|
|
bo.prefetchStrategies[BatchPatternMultiGPU] = &PrefetchConfig{
|
|
Strategy: PrefetchAggressive,
|
|
LookaheadCount: 8,
|
|
PrefetchSize: 4 * 1024 * 1024, // 4MB
|
|
ConcurrencyLevel: 6,
|
|
AdaptiveScaling: true,
|
|
}
|
|
bo.cacheStrategies[BatchPatternMultiGPU] = &CacheConfig{
|
|
Policy: CachePolicyML,
|
|
RetentionTime: 15 * time.Minute,
|
|
Priority: CachePriorityUrgent,
|
|
PreloadBatches: 4,
|
|
}
|
|
}
|
|
|
|
// RecordBatchAccess records a file access that's part of batch processing
|
|
func (bo *BatchOptimizer) RecordBatchAccess(inode uint64, offset int64, size int, isRead bool, batchHint string) *BatchInfo {
|
|
bo.Lock()
|
|
defer bo.Unlock()
|
|
|
|
access := BatchAccess{
|
|
Offset: offset,
|
|
Size: size,
|
|
AccessTime: time.Now(),
|
|
IsRead: isRead,
|
|
BatchHint: batchHint,
|
|
}
|
|
|
|
// Add to access history
|
|
history := bo.accessHistory[inode]
|
|
history = append(history, access)
|
|
if len(history) > bo.batchDetectionWindow {
|
|
history = history[1:] // Keep only recent accesses
|
|
}
|
|
bo.accessHistory[inode] = history
|
|
|
|
// Detect batch patterns
|
|
batchInfo := bo.detectBatchPattern(inode, history)
|
|
if batchInfo != nil {
|
|
bo.totalBatchesDetected++
|
|
|
|
// Add to tracking
|
|
bo.activeBatches[batchInfo.BatchID] = batchInfo
|
|
bo.inodeToBatches[inode] = append(bo.inodeToBatches[inode], batchInfo)
|
|
|
|
// Update batch sequence
|
|
bo.updateBatchSequence(inode, batchInfo)
|
|
|
|
glog.V(3).Infof("Detected batch: inode=%d, pattern=%v, size=%d, items=%d",
|
|
inode, batchInfo.AccessPattern, batchInfo.Size, batchInfo.ItemCount)
|
|
}
|
|
|
|
return batchInfo
|
|
}
|
|
|
|
// detectBatchPattern analyzes access history to detect batch patterns
|
|
func (bo *BatchOptimizer) detectBatchPattern(inode uint64, history []BatchAccess) *BatchInfo {
|
|
if len(history) < 3 {
|
|
return nil // Need minimum history
|
|
}
|
|
|
|
// Look for batch boundaries by analyzing access gaps and patterns
|
|
startIdx := len(history) - 10
|
|
if startIdx < 0 {
|
|
startIdx = 0
|
|
}
|
|
recent := history[startIdx:] // Look at last 10 accesses (or all if fewer)
|
|
if len(recent) < 3 {
|
|
recent = history
|
|
}
|
|
|
|
// Check for batch characteristics
|
|
batchInfo := bo.analyzePotentialBatch(recent, inode)
|
|
if batchInfo == nil {
|
|
return nil
|
|
}
|
|
|
|
// Determine access pattern
|
|
batchInfo.AccessPattern = bo.classifyBatchPattern(batchInfo, recent)
|
|
|
|
// Calculate performance metrics
|
|
bo.calculateBatchMetrics(batchInfo, recent)
|
|
|
|
return batchInfo
|
|
}
|
|
|
|
// analyzePotentialBatch analyzes a sequence of accesses to see if they form a batch
|
|
func (bo *BatchOptimizer) analyzePotentialBatch(accesses []BatchAccess, inode uint64) *BatchInfo {
|
|
if len(accesses) < 2 {
|
|
return nil
|
|
}
|
|
|
|
// Calculate basic statistics
|
|
var totalSize int64
|
|
var itemCount int
|
|
minOffset := accesses[0].Offset
|
|
maxOffset := accesses[0].Offset
|
|
|
|
accessOrder := make([]int64, len(accesses))
|
|
accessTimes := make([]time.Time, len(accesses))
|
|
|
|
for i, access := range accesses {
|
|
totalSize += int64(access.Size)
|
|
itemCount++
|
|
|
|
if access.Offset < minOffset {
|
|
minOffset = access.Offset
|
|
}
|
|
if access.Offset > maxOffset {
|
|
maxOffset = access.Offset
|
|
}
|
|
|
|
accessOrder[i] = access.Offset
|
|
accessTimes[i] = access.AccessTime
|
|
}
|
|
|
|
batchSize := maxOffset - minOffset + int64(accesses[len(accesses)-1].Size)
|
|
|
|
// Check if this qualifies as a batch
|
|
if batchSize < bo.minBatchSize || batchSize > bo.maxBatchSize {
|
|
return nil
|
|
}
|
|
|
|
// Check temporal locality (accesses should be close in time)
|
|
timeSpan := accessTimes[len(accessTimes)-1].Sub(accessTimes[0])
|
|
if timeSpan > 10*time.Minute { // Too spread out in time
|
|
return nil
|
|
}
|
|
|
|
// Create batch info
|
|
batchID := generateBatchID(inode, minOffset, time.Now())
|
|
|
|
batchInfo := &BatchInfo{
|
|
BatchID: batchID,
|
|
StartOffset: minOffset,
|
|
EndOffset: maxOffset,
|
|
Size: batchSize,
|
|
ItemCount: itemCount,
|
|
ItemSize: totalSize / int64(itemCount),
|
|
AccessOrder: accessOrder,
|
|
AccessTimes: accessTimes,
|
|
TotalTime: timeSpan,
|
|
LoadTime: timeSpan, // Initially assume all time is load time
|
|
}
|
|
|
|
return batchInfo
|
|
}
|
|
|
|
// classifyBatchPattern determines the access pattern of a batch
|
|
func (bo *BatchOptimizer) classifyBatchPattern(batch *BatchInfo, accesses []BatchAccess) BatchAccessPattern {
|
|
if len(batch.AccessOrder) < 2 {
|
|
return BatchPatternUnknown
|
|
}
|
|
|
|
// Check for linear pattern (sequential offsets)
|
|
isLinear := true
|
|
for i := 1; i < len(batch.AccessOrder); i++ {
|
|
if batch.AccessOrder[i] <= batch.AccessOrder[i-1] {
|
|
isLinear = false
|
|
break
|
|
}
|
|
}
|
|
|
|
if isLinear {
|
|
return BatchPatternLinear
|
|
}
|
|
|
|
// Check for strided pattern (regular gaps)
|
|
if bo.isStridedPattern(batch.AccessOrder) {
|
|
return BatchPatternStrided
|
|
}
|
|
|
|
// Check for shuffled pattern (randomized order)
|
|
if bo.isShuffledPattern(batch.AccessOrder) {
|
|
return BatchPatternShuffled
|
|
}
|
|
|
|
// Check for multi-GPU pattern (parallel access indicators)
|
|
if bo.isMultiGPUPattern(accesses) {
|
|
return BatchPatternMultiGPU
|
|
}
|
|
|
|
// Check for pipelined pattern (overlapping accesses)
|
|
if bo.isPipelinedPattern(batch.AccessTimes) {
|
|
return BatchPatternPipelined
|
|
}
|
|
|
|
return BatchPatternUnknown
|
|
}
|
|
|
|
// isStridedPattern checks if accesses follow a strided pattern
|
|
func (bo *BatchOptimizer) isStridedPattern(offsets []int64) bool {
|
|
if len(offsets) < 3 {
|
|
return false
|
|
}
|
|
|
|
// Calculate stride
|
|
stride := offsets[1] - offsets[0]
|
|
if stride <= 0 {
|
|
return false
|
|
}
|
|
|
|
// Check if all accesses follow the same stride
|
|
consistentStrides := 0
|
|
for i := 2; i < len(offsets); i++ {
|
|
currentStride := offsets[i] - offsets[i-1]
|
|
if currentStride == stride {
|
|
consistentStrides++
|
|
}
|
|
}
|
|
|
|
// At least 80% of strides should be consistent
|
|
return float64(consistentStrides)/float64(len(offsets)-2) >= 0.8
|
|
}
|
|
|
|
// isShuffledPattern checks if accesses are in randomized order
|
|
func (bo *BatchOptimizer) isShuffledPattern(offsets []int64) bool {
|
|
if len(offsets) < 5 {
|
|
return false
|
|
}
|
|
|
|
// Count inversions (out-of-order pairs)
|
|
inversions := 0
|
|
for i := 0; i < len(offsets); i++ {
|
|
for j := i + 1; j < len(offsets); j++ {
|
|
if offsets[i] > offsets[j] {
|
|
inversions++
|
|
}
|
|
}
|
|
}
|
|
|
|
totalPairs := len(offsets) * (len(offsets) - 1) / 2
|
|
inversionRate := float64(inversions) / float64(totalPairs)
|
|
|
|
// High inversion rate suggests shuffling
|
|
return inversionRate > 0.3
|
|
}
|
|
|
|
// isMultiGPUPattern checks for multi-GPU access patterns
|
|
func (bo *BatchOptimizer) isMultiGPUPattern(accesses []BatchAccess) bool {
|
|
// Look for multiple concurrent access streams
|
|
// This is a simplified heuristic - in practice, this would need more
|
|
// sophisticated detection based on process info, etc.
|
|
|
|
if len(accesses) < 4 {
|
|
return false
|
|
}
|
|
|
|
// Check for concurrent accesses (multiple accesses in very short time)
|
|
concurrentWindows := 0
|
|
windowSize := 100 * time.Millisecond
|
|
|
|
for i := 0; i < len(accesses)-1; i++ {
|
|
timeDiff := accesses[i+1].AccessTime.Sub(accesses[i].AccessTime)
|
|
if timeDiff < windowSize {
|
|
concurrentWindows++
|
|
}
|
|
}
|
|
|
|
// If many accesses are concurrent, might be multi-GPU
|
|
return float64(concurrentWindows)/float64(len(accesses)) > 0.5
|
|
}
|
|
|
|
// isPipelinedPattern checks for pipelined access patterns
|
|
func (bo *BatchOptimizer) isPipelinedPattern(accessTimes []time.Time) bool {
|
|
if len(accessTimes) < 3 {
|
|
return false
|
|
}
|
|
|
|
// Look for regular, overlapping timing patterns
|
|
intervals := make([]time.Duration, len(accessTimes)-1)
|
|
for i := 1; i < len(accessTimes); i++ {
|
|
intervals[i-1] = accessTimes[i].Sub(accessTimes[i-1])
|
|
}
|
|
|
|
// Calculate coefficient of variation for intervals
|
|
var sum, sumSq time.Duration
|
|
for _, interval := range intervals {
|
|
sum += interval
|
|
sumSq += interval * interval
|
|
}
|
|
|
|
n := time.Duration(len(intervals))
|
|
mean := sum / n
|
|
if mean == 0 {
|
|
return false
|
|
}
|
|
|
|
// Calculate variance and CV
|
|
variance := (sumSq / n) - (mean * mean)
|
|
cv := float64(variance) / float64(mean*mean)
|
|
|
|
// Low coefficient of variation suggests regular pipelining
|
|
return cv < 0.2
|
|
}
|
|
|
|
// calculateBatchMetrics calculates performance metrics for a batch
|
|
func (bo *BatchOptimizer) calculateBatchMetrics(batch *BatchInfo, accesses []BatchAccess) {
|
|
if len(batch.AccessTimes) < 2 {
|
|
return
|
|
}
|
|
|
|
// Calculate throughput
|
|
timeSpan := batch.AccessTimes[len(batch.AccessTimes)-1].Sub(batch.AccessTimes[0])
|
|
if timeSpan > 0 {
|
|
batch.Throughput = float64(batch.ItemCount) / timeSpan.Seconds()
|
|
}
|
|
|
|
// Estimate processing vs load time (heuristic)
|
|
// In practice, this would need more sophisticated measurement
|
|
avgItemTime := timeSpan / time.Duration(batch.ItemCount)
|
|
batch.ProcessTime = avgItemTime / 2 // Assume 50% processing time
|
|
batch.LoadTime = avgItemTime / 2 // Assume 50% load time
|
|
}
|
|
|
|
// updateBatchSequence updates the batch sequence for an inode
|
|
func (bo *BatchOptimizer) updateBatchSequence(inode uint64, newBatch *BatchInfo) {
|
|
sequence := bo.batchSequences[inode]
|
|
if sequence == nil {
|
|
sequence = &BatchSequence{
|
|
SequenceID: generateSequenceID(inode, time.Now()),
|
|
Batches: make([]*BatchInfo, 0, 10),
|
|
StartTime: time.Now(),
|
|
Pattern: newBatch.AccessPattern,
|
|
}
|
|
bo.batchSequences[inode] = sequence
|
|
}
|
|
|
|
sequence.Lock()
|
|
defer sequence.Unlock()
|
|
|
|
// Link batches
|
|
if len(sequence.Batches) > 0 {
|
|
lastBatch := sequence.Batches[len(sequence.Batches)-1]
|
|
lastBatch.NextBatch = newBatch
|
|
newBatch.PreviousBatch = lastBatch
|
|
}
|
|
|
|
sequence.Batches = append(sequence.Batches, newBatch)
|
|
sequence.LastAccess = time.Now()
|
|
|
|
// Update sequence pattern based on majority of batches
|
|
bo.updateSequencePattern(sequence)
|
|
|
|
// Make predictions for next batch
|
|
bo.updateSequencePredictions(sequence)
|
|
|
|
// Keep sequence size manageable
|
|
if len(sequence.Batches) > 100 {
|
|
sequence.Batches = sequence.Batches[len(sequence.Batches)-50:] // Keep last 50 batches
|
|
}
|
|
}
|
|
|
|
// updateSequencePattern updates the overall pattern of a batch sequence
|
|
func (bo *BatchOptimizer) updateSequencePattern(sequence *BatchSequence) {
|
|
if len(sequence.Batches) < 3 {
|
|
return
|
|
}
|
|
|
|
// Count patterns
|
|
patternCounts := make(map[BatchAccessPattern]int)
|
|
for _, batch := range sequence.Batches {
|
|
patternCounts[batch.AccessPattern]++
|
|
}
|
|
|
|
// Find most common pattern
|
|
maxCount := 0
|
|
var dominantPattern BatchAccessPattern
|
|
for pattern, count := range patternCounts {
|
|
if count > maxCount {
|
|
maxCount = count
|
|
dominantPattern = pattern
|
|
}
|
|
}
|
|
|
|
sequence.Pattern = dominantPattern
|
|
}
|
|
|
|
// updateSequencePredictions updates predictions for the next batch
|
|
func (bo *BatchOptimizer) updateSequencePredictions(sequence *BatchSequence) {
|
|
if len(sequence.Batches) < 2 {
|
|
return
|
|
}
|
|
|
|
recent := sequence.Batches[len(sequence.Batches)-3:] // Last 3 batches
|
|
if len(recent) < 2 {
|
|
recent = sequence.Batches
|
|
}
|
|
|
|
// Predict next batch offset based on pattern
|
|
switch sequence.Pattern {
|
|
case BatchPatternLinear:
|
|
// Linear progression
|
|
lastBatch := recent[len(recent)-1]
|
|
if len(recent) >= 2 {
|
|
prevBatch := recent[len(recent)-2]
|
|
gap := lastBatch.StartOffset - prevBatch.EndOffset
|
|
sequence.NextBatchOffset = lastBatch.EndOffset + gap
|
|
sequence.NextBatchSize = lastBatch.Size
|
|
sequence.Confidence = 0.8
|
|
}
|
|
|
|
case BatchPatternStrided:
|
|
// Regular stride
|
|
if len(recent) >= 3 {
|
|
stride := recent[len(recent)-1].StartOffset - recent[len(recent)-2].StartOffset
|
|
sequence.NextBatchOffset = recent[len(recent)-1].StartOffset + stride
|
|
sequence.NextBatchSize = recent[len(recent)-1].Size
|
|
sequence.Confidence = 0.7
|
|
}
|
|
|
|
default:
|
|
// Lower confidence for unpredictable patterns
|
|
sequence.Confidence = 0.3
|
|
}
|
|
}
|
|
|
|
// GetBatchRecommendations returns optimization recommendations for batch access
|
|
func (bo *BatchOptimizer) GetBatchRecommendations(inode uint64) *BatchOptimizationRecommendations {
|
|
bo.RLock()
|
|
defer bo.RUnlock()
|
|
|
|
sequence := bo.batchSequences[inode]
|
|
if sequence == nil {
|
|
return &BatchOptimizationRecommendations{
|
|
ShouldOptimize: false,
|
|
}
|
|
}
|
|
|
|
sequence.RLock()
|
|
defer sequence.RUnlock()
|
|
|
|
prefetchConfig := bo.prefetchStrategies[sequence.Pattern]
|
|
cacheConfig := bo.cacheStrategies[sequence.Pattern]
|
|
|
|
if prefetchConfig == nil {
|
|
prefetchConfig = bo.prefetchStrategies[BatchPatternUnknown]
|
|
}
|
|
if cacheConfig == nil {
|
|
cacheConfig = bo.cacheStrategies[BatchPatternUnknown]
|
|
}
|
|
|
|
recommendations := &BatchOptimizationRecommendations{
|
|
ShouldOptimize: true,
|
|
Pattern: sequence.Pattern,
|
|
PrefetchSize: prefetchConfig.PrefetchSize,
|
|
PrefetchCount: prefetchConfig.LookaheadCount,
|
|
CachePriority: cacheConfig.Priority,
|
|
CacheRetention: cacheConfig.RetentionTime,
|
|
NextBatchOffset: sequence.NextBatchOffset,
|
|
NextBatchSize: sequence.NextBatchSize,
|
|
Confidence: sequence.Confidence,
|
|
}
|
|
|
|
return recommendations
|
|
}
|
|
|
|
// BatchOptimizationRecommendations holds batch optimization recommendations
|
|
type BatchOptimizationRecommendations struct {
|
|
ShouldOptimize bool `json:"should_optimize"`
|
|
Pattern BatchAccessPattern `json:"pattern"`
|
|
PrefetchSize int64 `json:"prefetch_size"`
|
|
PrefetchCount int `json:"prefetch_count"`
|
|
CachePriority CachePriority `json:"cache_priority"`
|
|
CacheRetention time.Duration `json:"cache_retention"`
|
|
NextBatchOffset int64 `json:"next_batch_offset"`
|
|
NextBatchSize int64 `json:"next_batch_size"`
|
|
Confidence float64 `json:"confidence"`
|
|
}
|
|
|
|
// GetBatchMetrics returns comprehensive batch optimization metrics
|
|
func (bo *BatchOptimizer) GetBatchMetrics() BatchOptimizerMetrics {
|
|
bo.RLock()
|
|
defer bo.RUnlock()
|
|
|
|
metrics := BatchOptimizerMetrics{
|
|
TotalBatchesDetected: bo.totalBatchesDetected,
|
|
ActiveBatches: int64(len(bo.activeBatches)),
|
|
CompletedBatches: int64(len(bo.completedBatches)),
|
|
OptimizationHits: bo.optimizationHits,
|
|
OptimizationMisses: bo.optimizationMisses,
|
|
PatternCounts: make(map[BatchAccessPattern]int64),
|
|
}
|
|
|
|
// Count patterns
|
|
for _, batch := range bo.activeBatches {
|
|
batch.RLock()
|
|
metrics.PatternCounts[batch.AccessPattern]++
|
|
batch.RUnlock()
|
|
}
|
|
|
|
// Calculate hit rate
|
|
totalAttempts := bo.optimizationHits + bo.optimizationMisses
|
|
if totalAttempts > 0 {
|
|
metrics.OptimizationHitRate = float64(bo.optimizationHits) / float64(totalAttempts)
|
|
}
|
|
|
|
return metrics
|
|
}
|
|
|
|
// BatchOptimizerMetrics holds metrics for batch optimization
|
|
type BatchOptimizerMetrics struct {
|
|
TotalBatchesDetected int64 `json:"total_batches_detected"`
|
|
ActiveBatches int64 `json:"active_batches"`
|
|
CompletedBatches int64 `json:"completed_batches"`
|
|
OptimizationHits int64 `json:"optimization_hits"`
|
|
OptimizationMisses int64 `json:"optimization_misses"`
|
|
OptimizationHitRate float64 `json:"optimization_hit_rate"`
|
|
PatternCounts map[BatchAccessPattern]int64 `json:"pattern_counts"`
|
|
}
|
|
|
|
// cleanupRoutine performs periodic cleanup of old batch information
|
|
func (bo *BatchOptimizer) cleanupRoutine() {
|
|
for {
|
|
select {
|
|
case <-bo.cleanupTicker.C:
|
|
bo.performCleanup()
|
|
case <-bo.stopCleanup:
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
// performCleanup removes old batch information
|
|
func (bo *BatchOptimizer) performCleanup() {
|
|
bo.Lock()
|
|
defer bo.Unlock()
|
|
|
|
now := time.Now()
|
|
cutoff := now.Add(-30 * time.Minute) // Remove batches older than 30 minutes
|
|
|
|
// Clean up completed batches
|
|
for id, batch := range bo.completedBatches {
|
|
batch.RLock()
|
|
shouldRemove := len(batch.AccessTimes) > 0 && batch.AccessTimes[0].Before(cutoff)
|
|
batch.RUnlock()
|
|
|
|
if shouldRemove {
|
|
delete(bo.completedBatches, id)
|
|
}
|
|
}
|
|
|
|
// Clean up access history
|
|
for inode, history := range bo.accessHistory {
|
|
filtered := make([]BatchAccess, 0, len(history))
|
|
for _, access := range history {
|
|
if access.AccessTime.After(cutoff) {
|
|
filtered = append(filtered, access)
|
|
}
|
|
}
|
|
|
|
if len(filtered) == 0 {
|
|
delete(bo.accessHistory, inode)
|
|
} else {
|
|
bo.accessHistory[inode] = filtered
|
|
}
|
|
}
|
|
|
|
// Clean up batch sequences
|
|
for inode, sequence := range bo.batchSequences {
|
|
sequence.Lock()
|
|
if sequence.LastAccess.Before(cutoff) {
|
|
delete(bo.batchSequences, inode)
|
|
sequence.Unlock()
|
|
continue
|
|
}
|
|
sequence.Unlock()
|
|
}
|
|
|
|
glog.V(4).Infof("Batch optimizer cleanup completed")
|
|
}
|
|
|
|
// Shutdown gracefully shuts down the batch optimizer
|
|
func (bo *BatchOptimizer) Shutdown() {
|
|
if bo.cleanupTicker != nil {
|
|
bo.cleanupTicker.Stop()
|
|
}
|
|
|
|
close(bo.stopCleanup)
|
|
|
|
glog.V(1).Infof("Batch optimizer shutdown complete")
|
|
}
|
|
|
|
// Helper functions
|
|
|
|
func generateBatchID(inode uint64, offset int64, timestamp time.Time) string {
|
|
return fmt.Sprintf("batch_%d_%d_%d", inode, offset, timestamp.Unix())
|
|
}
|
|
|
|
func generateSequenceID(inode uint64, timestamp time.Time) string {
|
|
return fmt.Sprintf("seq_%d_%d", inode, timestamp.Unix())
|
|
}
|
|
|
|
// String methods for enums
|
|
|
|
func (bap BatchAccessPattern) String() string {
|
|
switch bap {
|
|
case BatchPatternLinear:
|
|
return "Linear"
|
|
case BatchPatternStrided:
|
|
return "Strided"
|
|
case BatchPatternShuffled:
|
|
return "Shuffled"
|
|
case BatchPatternHierarchical:
|
|
return "Hierarchical"
|
|
case BatchPatternMultiGPU:
|
|
return "MultiGPU"
|
|
case BatchPatternPipelined:
|
|
return "Pipelined"
|
|
default:
|
|
return "Unknown"
|
|
}
|
|
}
|