1
0
Fork 0
mirror of https://github.com/chrislusf/seaweedfs synced 2025-09-10 05:12:47 +02:00
seaweedfs/weed/mount/ml/batch_optimizer.go
2025-08-30 17:08:02 -07:00

813 lines
24 KiB
Go

package ml
import (
"fmt"
"sync"
"time"
"github.com/seaweedfs/seaweedfs/weed/glog"
)
// BatchAccessPattern represents different batch access patterns
type BatchAccessPattern int
const (
BatchPatternUnknown BatchAccessPattern = iota
BatchPatternLinear // Linear batch processing
BatchPatternStrided // Strided access with fixed gaps
BatchPatternShuffled // Randomized batch order
BatchPatternHierarchical // Hierarchical/nested batch access
BatchPatternMultiGPU // Multi-GPU distributed batches
BatchPatternPipelined // Pipelined batch processing
)
// BatchAccess represents a single file access that's part of batch processing
type BatchAccess struct {
Offset int64 // File offset
Size int // Access size
AccessTime time.Time // When accessed
IsRead bool // Whether this was a read operation
BatchHint string // Optional batch identifier hint
}
// BatchInfo holds information about a detected batch
type BatchInfo struct {
sync.RWMutex
// Batch identification
BatchID string // Unique batch identifier
StartOffset int64 // Starting file offset
EndOffset int64 // Ending file offset
Size int64 // Total batch size in bytes
ItemCount int // Number of items in batch
ItemSize int64 // Average item size
// Access pattern
AccessPattern BatchAccessPattern // Detected access pattern
AccessOrder []int64 // Order of access within batch
AccessTimes []time.Time // When each item was accessed
ProcessingTime time.Duration // Total time to process batch
// Performance metrics
LoadTime time.Duration // Time to load batch from storage
ProcessTime time.Duration // Time to process batch (compute)
TotalTime time.Duration // Total end-to-end time
Throughput float64 // Items per second
// Optimization state
IsPrefetched bool // Whether batch was prefetched
CacheHitRate float64 // Percentage of cache hits
OptimalPrefetch int64 // Recommended prefetch size
// Relationship to other batches
PreviousBatch *BatchInfo // Previous batch in sequence
NextBatch *BatchInfo // Next batch in sequence
ParentBatch *BatchInfo // Parent batch (for hierarchical)
ChildBatches []*BatchInfo // Child batches (for hierarchical)
}
// BatchOptimizer optimizes batch access patterns for ML workloads
type BatchOptimizer struct {
sync.RWMutex
// Configuration
maxBatchesTracked int // Maximum number of batches to track
batchDetectionWindow int // Window size for batch detection
minBatchSize int64 // Minimum size to consider as batch
maxBatchSize int64 // Maximum size to consider as batch
// Batch tracking
activeBatches map[string]*BatchInfo // Currently active batches
completedBatches map[string]*BatchInfo // Recently completed batches
inodeToBatches map[uint64][]*BatchInfo // File to batches mapping
// Pattern detection
accessHistory map[uint64][]BatchAccess // Recent access history per file
batchSequences map[uint64]*BatchSequence // Detected batch sequences
// Optimization strategies
prefetchStrategies map[BatchAccessPattern]*PrefetchConfig // Prefetch configs per pattern
cacheStrategies map[BatchAccessPattern]*CacheConfig // Cache configs per pattern
// Statistics
totalBatchesDetected int64 // Total batches detected
optimizationHits int64 // Successful optimization applications
optimizationMisses int64 // Failed optimization attempts
// Background processing
cleanupTicker *time.Ticker // Cleanup timer
stopCleanup chan struct{} // Cleanup stop signal
}
// BatchSequence represents a sequence of related batches
type BatchSequence struct {
sync.RWMutex
SequenceID string // Unique sequence identifier
Batches []*BatchInfo // Batches in sequence
Pattern BatchAccessPattern // Overall sequence pattern
StartTime time.Time // When sequence started
LastAccess time.Time // Last access in sequence
IsComplete bool // Whether sequence is complete
RepeatCount int // How many times sequence has repeated
// Predictions
NextBatchOffset int64 // Predicted next batch offset
NextBatchSize int64 // Predicted next batch size
Confidence float64 // Confidence in predictions (0-1)
}
// PrefetchConfig holds configuration for prefetching strategies
type PrefetchConfig struct {
Strategy PrefetchStrategy // Which prefetch strategy to use
LookaheadCount int // How many items to prefetch ahead
PrefetchSize int64 // Size to prefetch per operation
ConcurrencyLevel int // How many concurrent prefetch operations
AdaptiveScaling bool // Whether to scale based on performance
}
// CacheConfig holds configuration for caching strategies
type CacheConfig struct {
Policy CachePolicy // Which cache policy to use
RetentionTime time.Duration // How long to keep items cached
Priority CachePriority // Cache priority level
PreloadBatches int // How many batches to preload
}
// NewBatchOptimizer creates a new batch optimizer
func NewBatchOptimizer() *BatchOptimizer {
bo := &BatchOptimizer{
maxBatchesTracked: 1000, // Track up to 1000 batches
batchDetectionWindow: 100, // Look at last 100 accesses
minBatchSize: 64 * 1024, // Minimum 64KB batch
maxBatchSize: 100 * 1024 * 1024, // Maximum 100MB batch
activeBatches: make(map[string]*BatchInfo),
completedBatches: make(map[string]*BatchInfo),
inodeToBatches: make(map[uint64][]*BatchInfo),
accessHistory: make(map[uint64][]BatchAccess),
batchSequences: make(map[uint64]*BatchSequence),
prefetchStrategies: make(map[BatchAccessPattern]*PrefetchConfig),
cacheStrategies: make(map[BatchAccessPattern]*CacheConfig),
stopCleanup: make(chan struct{}),
}
// Initialize default strategies
bo.initializeDefaultStrategies()
// Start cleanup routine
bo.cleanupTicker = time.NewTicker(5 * time.Minute)
go bo.cleanupRoutine()
glog.V(1).Infof("Batch optimizer initialized")
return bo
}
// initializeDefaultStrategies sets up default optimization strategies for each pattern
func (bo *BatchOptimizer) initializeDefaultStrategies() {
// Linear batch pattern - aggressive prefetching
bo.prefetchStrategies[BatchPatternLinear] = &PrefetchConfig{
Strategy: PrefetchAggressive,
LookaheadCount: 5,
PrefetchSize: 2 * 1024 * 1024, // 2MB
ConcurrencyLevel: 3,
AdaptiveScaling: true,
}
bo.cacheStrategies[BatchPatternLinear] = &CacheConfig{
Policy: CachePolicyTrainingAware,
RetentionTime: 10 * time.Minute,
Priority: CachePriorityHigh,
PreloadBatches: 2,
}
// Shuffled batch pattern - conservative prefetching
bo.prefetchStrategies[BatchPatternShuffled] = &PrefetchConfig{
Strategy: PrefetchBalanced,
LookaheadCount: 2,
PrefetchSize: 512 * 1024, // 512KB
ConcurrencyLevel: 2,
AdaptiveScaling: true,
}
bo.cacheStrategies[BatchPatternShuffled] = &CacheConfig{
Policy: CachePolicyLRU,
RetentionTime: 5 * time.Minute,
Priority: CachePriorityNormal,
PreloadBatches: 1,
}
// Multi-GPU pattern - high concurrency
bo.prefetchStrategies[BatchPatternMultiGPU] = &PrefetchConfig{
Strategy: PrefetchAggressive,
LookaheadCount: 8,
PrefetchSize: 4 * 1024 * 1024, // 4MB
ConcurrencyLevel: 6,
AdaptiveScaling: true,
}
bo.cacheStrategies[BatchPatternMultiGPU] = &CacheConfig{
Policy: CachePolicyML,
RetentionTime: 15 * time.Minute,
Priority: CachePriorityUrgent,
PreloadBatches: 4,
}
}
// RecordBatchAccess records a file access that's part of batch processing
func (bo *BatchOptimizer) RecordBatchAccess(inode uint64, offset int64, size int, isRead bool, batchHint string) *BatchInfo {
bo.Lock()
defer bo.Unlock()
access := BatchAccess{
Offset: offset,
Size: size,
AccessTime: time.Now(),
IsRead: isRead,
BatchHint: batchHint,
}
// Add to access history
history := bo.accessHistory[inode]
history = append(history, access)
if len(history) > bo.batchDetectionWindow {
history = history[1:] // Keep only recent accesses
}
bo.accessHistory[inode] = history
// Detect batch patterns
batchInfo := bo.detectBatchPattern(inode, history)
if batchInfo != nil {
bo.totalBatchesDetected++
// Add to tracking
bo.activeBatches[batchInfo.BatchID] = batchInfo
bo.inodeToBatches[inode] = append(bo.inodeToBatches[inode], batchInfo)
// Update batch sequence
bo.updateBatchSequence(inode, batchInfo)
glog.V(3).Infof("Detected batch: inode=%d, pattern=%v, size=%d, items=%d",
inode, batchInfo.AccessPattern, batchInfo.Size, batchInfo.ItemCount)
}
return batchInfo
}
// detectBatchPattern analyzes access history to detect batch patterns
func (bo *BatchOptimizer) detectBatchPattern(inode uint64, history []BatchAccess) *BatchInfo {
if len(history) < 3 {
return nil // Need minimum history
}
// Look for batch boundaries by analyzing access gaps and patterns
startIdx := len(history) - 10
if startIdx < 0 {
startIdx = 0
}
recent := history[startIdx:] // Look at last 10 accesses (or all if fewer)
if len(recent) < 3 {
recent = history
}
// Check for batch characteristics
batchInfo := bo.analyzePotentialBatch(recent, inode)
if batchInfo == nil {
return nil
}
// Determine access pattern
batchInfo.AccessPattern = bo.classifyBatchPattern(batchInfo, recent)
// Calculate performance metrics
bo.calculateBatchMetrics(batchInfo, recent)
return batchInfo
}
// analyzePotentialBatch analyzes a sequence of accesses to see if they form a batch
func (bo *BatchOptimizer) analyzePotentialBatch(accesses []BatchAccess, inode uint64) *BatchInfo {
if len(accesses) < 2 {
return nil
}
// Calculate basic statistics
var totalSize int64
var itemCount int
minOffset := accesses[0].Offset
maxOffset := accesses[0].Offset
accessOrder := make([]int64, len(accesses))
accessTimes := make([]time.Time, len(accesses))
for i, access := range accesses {
totalSize += int64(access.Size)
itemCount++
if access.Offset < minOffset {
minOffset = access.Offset
}
if access.Offset > maxOffset {
maxOffset = access.Offset
}
accessOrder[i] = access.Offset
accessTimes[i] = access.AccessTime
}
batchSize := maxOffset - minOffset + int64(accesses[len(accesses)-1].Size)
// Check if this qualifies as a batch
if batchSize < bo.minBatchSize || batchSize > bo.maxBatchSize {
return nil
}
// Check temporal locality (accesses should be close in time)
timeSpan := accessTimes[len(accessTimes)-1].Sub(accessTimes[0])
if timeSpan > 10*time.Minute { // Too spread out in time
return nil
}
// Create batch info
batchID := generateBatchID(inode, minOffset, time.Now())
batchInfo := &BatchInfo{
BatchID: batchID,
StartOffset: minOffset,
EndOffset: maxOffset,
Size: batchSize,
ItemCount: itemCount,
ItemSize: totalSize / int64(itemCount),
AccessOrder: accessOrder,
AccessTimes: accessTimes,
TotalTime: timeSpan,
LoadTime: timeSpan, // Initially assume all time is load time
}
return batchInfo
}
// classifyBatchPattern determines the access pattern of a batch
func (bo *BatchOptimizer) classifyBatchPattern(batch *BatchInfo, accesses []BatchAccess) BatchAccessPattern {
if len(batch.AccessOrder) < 2 {
return BatchPatternUnknown
}
// Check for linear pattern (sequential offsets)
isLinear := true
for i := 1; i < len(batch.AccessOrder); i++ {
if batch.AccessOrder[i] <= batch.AccessOrder[i-1] {
isLinear = false
break
}
}
if isLinear {
return BatchPatternLinear
}
// Check for strided pattern (regular gaps)
if bo.isStridedPattern(batch.AccessOrder) {
return BatchPatternStrided
}
// Check for shuffled pattern (randomized order)
if bo.isShuffledPattern(batch.AccessOrder) {
return BatchPatternShuffled
}
// Check for multi-GPU pattern (parallel access indicators)
if bo.isMultiGPUPattern(accesses) {
return BatchPatternMultiGPU
}
// Check for pipelined pattern (overlapping accesses)
if bo.isPipelinedPattern(batch.AccessTimes) {
return BatchPatternPipelined
}
return BatchPatternUnknown
}
// isStridedPattern checks if accesses follow a strided pattern
func (bo *BatchOptimizer) isStridedPattern(offsets []int64) bool {
if len(offsets) < 3 {
return false
}
// Calculate stride
stride := offsets[1] - offsets[0]
if stride <= 0 {
return false
}
// Check if all accesses follow the same stride
consistentStrides := 0
for i := 2; i < len(offsets); i++ {
currentStride := offsets[i] - offsets[i-1]
if currentStride == stride {
consistentStrides++
}
}
// At least 80% of strides should be consistent
return float64(consistentStrides)/float64(len(offsets)-2) >= 0.8
}
// isShuffledPattern checks if accesses are in randomized order
func (bo *BatchOptimizer) isShuffledPattern(offsets []int64) bool {
if len(offsets) < 5 {
return false
}
// Count inversions (out-of-order pairs)
inversions := 0
for i := 0; i < len(offsets); i++ {
for j := i + 1; j < len(offsets); j++ {
if offsets[i] > offsets[j] {
inversions++
}
}
}
totalPairs := len(offsets) * (len(offsets) - 1) / 2
inversionRate := float64(inversions) / float64(totalPairs)
// High inversion rate suggests shuffling
return inversionRate > 0.3
}
// isMultiGPUPattern checks for multi-GPU access patterns
func (bo *BatchOptimizer) isMultiGPUPattern(accesses []BatchAccess) bool {
// Look for multiple concurrent access streams
// This is a simplified heuristic - in practice, this would need more
// sophisticated detection based on process info, etc.
if len(accesses) < 4 {
return false
}
// Check for concurrent accesses (multiple accesses in very short time)
concurrentWindows := 0
windowSize := 100 * time.Millisecond
for i := 0; i < len(accesses)-1; i++ {
timeDiff := accesses[i+1].AccessTime.Sub(accesses[i].AccessTime)
if timeDiff < windowSize {
concurrentWindows++
}
}
// If many accesses are concurrent, might be multi-GPU
return float64(concurrentWindows)/float64(len(accesses)) > 0.5
}
// isPipelinedPattern checks for pipelined access patterns
func (bo *BatchOptimizer) isPipelinedPattern(accessTimes []time.Time) bool {
if len(accessTimes) < 3 {
return false
}
// Look for regular, overlapping timing patterns
intervals := make([]time.Duration, len(accessTimes)-1)
for i := 1; i < len(accessTimes); i++ {
intervals[i-1] = accessTimes[i].Sub(accessTimes[i-1])
}
// Calculate coefficient of variation for intervals
var sum, sumSq time.Duration
for _, interval := range intervals {
sum += interval
sumSq += interval * interval
}
n := time.Duration(len(intervals))
mean := sum / n
if mean == 0 {
return false
}
// Calculate variance and CV
variance := (sumSq / n) - (mean * mean)
cv := float64(variance) / float64(mean*mean)
// Low coefficient of variation suggests regular pipelining
return cv < 0.2
}
// calculateBatchMetrics calculates performance metrics for a batch
func (bo *BatchOptimizer) calculateBatchMetrics(batch *BatchInfo, accesses []BatchAccess) {
if len(batch.AccessTimes) < 2 {
return
}
// Calculate throughput
timeSpan := batch.AccessTimes[len(batch.AccessTimes)-1].Sub(batch.AccessTimes[0])
if timeSpan > 0 {
batch.Throughput = float64(batch.ItemCount) / timeSpan.Seconds()
}
// Estimate processing vs load time (heuristic)
// In practice, this would need more sophisticated measurement
avgItemTime := timeSpan / time.Duration(batch.ItemCount)
batch.ProcessTime = avgItemTime / 2 // Assume 50% processing time
batch.LoadTime = avgItemTime / 2 // Assume 50% load time
}
// updateBatchSequence updates the batch sequence for an inode
func (bo *BatchOptimizer) updateBatchSequence(inode uint64, newBatch *BatchInfo) {
sequence := bo.batchSequences[inode]
if sequence == nil {
sequence = &BatchSequence{
SequenceID: generateSequenceID(inode, time.Now()),
Batches: make([]*BatchInfo, 0, 10),
StartTime: time.Now(),
Pattern: newBatch.AccessPattern,
}
bo.batchSequences[inode] = sequence
}
sequence.Lock()
defer sequence.Unlock()
// Link batches
if len(sequence.Batches) > 0 {
lastBatch := sequence.Batches[len(sequence.Batches)-1]
lastBatch.NextBatch = newBatch
newBatch.PreviousBatch = lastBatch
}
sequence.Batches = append(sequence.Batches, newBatch)
sequence.LastAccess = time.Now()
// Update sequence pattern based on majority of batches
bo.updateSequencePattern(sequence)
// Make predictions for next batch
bo.updateSequencePredictions(sequence)
// Keep sequence size manageable
if len(sequence.Batches) > 100 {
sequence.Batches = sequence.Batches[len(sequence.Batches)-50:] // Keep last 50 batches
}
}
// updateSequencePattern updates the overall pattern of a batch sequence
func (bo *BatchOptimizer) updateSequencePattern(sequence *BatchSequence) {
if len(sequence.Batches) < 3 {
return
}
// Count patterns
patternCounts := make(map[BatchAccessPattern]int)
for _, batch := range sequence.Batches {
patternCounts[batch.AccessPattern]++
}
// Find most common pattern
maxCount := 0
var dominantPattern BatchAccessPattern
for pattern, count := range patternCounts {
if count > maxCount {
maxCount = count
dominantPattern = pattern
}
}
sequence.Pattern = dominantPattern
}
// updateSequencePredictions updates predictions for the next batch
func (bo *BatchOptimizer) updateSequencePredictions(sequence *BatchSequence) {
if len(sequence.Batches) < 2 {
return
}
recent := sequence.Batches[len(sequence.Batches)-3:] // Last 3 batches
if len(recent) < 2 {
recent = sequence.Batches
}
// Predict next batch offset based on pattern
switch sequence.Pattern {
case BatchPatternLinear:
// Linear progression
lastBatch := recent[len(recent)-1]
if len(recent) >= 2 {
prevBatch := recent[len(recent)-2]
gap := lastBatch.StartOffset - prevBatch.EndOffset
sequence.NextBatchOffset = lastBatch.EndOffset + gap
sequence.NextBatchSize = lastBatch.Size
sequence.Confidence = 0.8
}
case BatchPatternStrided:
// Regular stride
if len(recent) >= 3 {
stride := recent[len(recent)-1].StartOffset - recent[len(recent)-2].StartOffset
sequence.NextBatchOffset = recent[len(recent)-1].StartOffset + stride
sequence.NextBatchSize = recent[len(recent)-1].Size
sequence.Confidence = 0.7
}
default:
// Lower confidence for unpredictable patterns
sequence.Confidence = 0.3
}
}
// GetBatchRecommendations returns optimization recommendations for batch access
func (bo *BatchOptimizer) GetBatchRecommendations(inode uint64) *BatchOptimizationRecommendations {
bo.RLock()
defer bo.RUnlock()
sequence := bo.batchSequences[inode]
if sequence == nil {
return &BatchOptimizationRecommendations{
ShouldOptimize: false,
}
}
sequence.RLock()
defer sequence.RUnlock()
prefetchConfig := bo.prefetchStrategies[sequence.Pattern]
cacheConfig := bo.cacheStrategies[sequence.Pattern]
if prefetchConfig == nil {
prefetchConfig = bo.prefetchStrategies[BatchPatternUnknown]
}
if cacheConfig == nil {
cacheConfig = bo.cacheStrategies[BatchPatternUnknown]
}
recommendations := &BatchOptimizationRecommendations{
ShouldOptimize: true,
Pattern: sequence.Pattern,
PrefetchSize: prefetchConfig.PrefetchSize,
PrefetchCount: prefetchConfig.LookaheadCount,
CachePriority: cacheConfig.Priority,
CacheRetention: cacheConfig.RetentionTime,
NextBatchOffset: sequence.NextBatchOffset,
NextBatchSize: sequence.NextBatchSize,
Confidence: sequence.Confidence,
}
return recommendations
}
// BatchOptimizationRecommendations holds batch optimization recommendations
type BatchOptimizationRecommendations struct {
ShouldOptimize bool `json:"should_optimize"`
Pattern BatchAccessPattern `json:"pattern"`
PrefetchSize int64 `json:"prefetch_size"`
PrefetchCount int `json:"prefetch_count"`
CachePriority CachePriority `json:"cache_priority"`
CacheRetention time.Duration `json:"cache_retention"`
NextBatchOffset int64 `json:"next_batch_offset"`
NextBatchSize int64 `json:"next_batch_size"`
Confidence float64 `json:"confidence"`
}
// GetBatchMetrics returns comprehensive batch optimization metrics
func (bo *BatchOptimizer) GetBatchMetrics() BatchOptimizerMetrics {
bo.RLock()
defer bo.RUnlock()
metrics := BatchOptimizerMetrics{
TotalBatchesDetected: bo.totalBatchesDetected,
ActiveBatches: int64(len(bo.activeBatches)),
CompletedBatches: int64(len(bo.completedBatches)),
OptimizationHits: bo.optimizationHits,
OptimizationMisses: bo.optimizationMisses,
PatternCounts: make(map[BatchAccessPattern]int64),
}
// Count patterns
for _, batch := range bo.activeBatches {
batch.RLock()
metrics.PatternCounts[batch.AccessPattern]++
batch.RUnlock()
}
// Calculate hit rate
totalAttempts := bo.optimizationHits + bo.optimizationMisses
if totalAttempts > 0 {
metrics.OptimizationHitRate = float64(bo.optimizationHits) / float64(totalAttempts)
}
return metrics
}
// BatchOptimizerMetrics holds metrics for batch optimization
type BatchOptimizerMetrics struct {
TotalBatchesDetected int64 `json:"total_batches_detected"`
ActiveBatches int64 `json:"active_batches"`
CompletedBatches int64 `json:"completed_batches"`
OptimizationHits int64 `json:"optimization_hits"`
OptimizationMisses int64 `json:"optimization_misses"`
OptimizationHitRate float64 `json:"optimization_hit_rate"`
PatternCounts map[BatchAccessPattern]int64 `json:"pattern_counts"`
}
// cleanupRoutine performs periodic cleanup of old batch information
func (bo *BatchOptimizer) cleanupRoutine() {
for {
select {
case <-bo.cleanupTicker.C:
bo.performCleanup()
case <-bo.stopCleanup:
return
}
}
}
// performCleanup removes old batch information
func (bo *BatchOptimizer) performCleanup() {
bo.Lock()
defer bo.Unlock()
now := time.Now()
cutoff := now.Add(-30 * time.Minute) // Remove batches older than 30 minutes
// Clean up completed batches
for id, batch := range bo.completedBatches {
batch.RLock()
shouldRemove := len(batch.AccessTimes) > 0 && batch.AccessTimes[0].Before(cutoff)
batch.RUnlock()
if shouldRemove {
delete(bo.completedBatches, id)
}
}
// Clean up access history
for inode, history := range bo.accessHistory {
filtered := make([]BatchAccess, 0, len(history))
for _, access := range history {
if access.AccessTime.After(cutoff) {
filtered = append(filtered, access)
}
}
if len(filtered) == 0 {
delete(bo.accessHistory, inode)
} else {
bo.accessHistory[inode] = filtered
}
}
// Clean up batch sequences
for inode, sequence := range bo.batchSequences {
sequence.Lock()
if sequence.LastAccess.Before(cutoff) {
delete(bo.batchSequences, inode)
sequence.Unlock()
continue
}
sequence.Unlock()
}
glog.V(4).Infof("Batch optimizer cleanup completed")
}
// Shutdown gracefully shuts down the batch optimizer
func (bo *BatchOptimizer) Shutdown() {
if bo.cleanupTicker != nil {
bo.cleanupTicker.Stop()
}
close(bo.stopCleanup)
glog.V(1).Infof("Batch optimizer shutdown complete")
}
// Helper functions
func generateBatchID(inode uint64, offset int64, timestamp time.Time) string {
return fmt.Sprintf("batch_%d_%d_%d", inode, offset, timestamp.Unix())
}
func generateSequenceID(inode uint64, timestamp time.Time) string {
return fmt.Sprintf("seq_%d_%d", inode, timestamp.Unix())
}
// String methods for enums
func (bap BatchAccessPattern) String() string {
switch bap {
case BatchPatternLinear:
return "Linear"
case BatchPatternStrided:
return "Strided"
case BatchPatternShuffled:
return "Shuffled"
case BatchPatternHierarchical:
return "Hierarchical"
case BatchPatternMultiGPU:
return "MultiGPU"
case BatchPatternPipelined:
return "Pipelined"
default:
return "Unknown"
}
}