1
0
Fork 0
mirror of https://github.com/chrislusf/seaweedfs synced 2025-09-10 05:12:47 +02:00
seaweedfs/weed/mount/ml/dataset_pattern.go
chrislu 29edb780d9 Phase 3: Advanced ML pattern detection and training optimization
- Add DatasetPatternDetector with ML-specific dataset access pattern analysis
  * Sequential, shuffle, batch, multi-epoch, distributed, and validation patterns
  * Epoch boundary detection and dataset traversal analysis
  * Adaptive prefetch recommendations based on detected patterns
  * Comprehensive throughput and performance metrics

- Implement TrainingOptimizer for ML workload lifecycle management
  * Training phase detection (initialization, training, validation, checkpointing)
  * Model file access optimization with checkpoint frequency tracking
  * Training workload registration and multi-workload support
  * Adaptive optimization levels based on training phase and performance

- Create BatchOptimizer for intelligent batch access pattern optimization
  * Linear, strided, shuffled, hierarchical, multi-GPU, and pipelined batch patterns
  * Batch sequence detection with predictive next-batch recommendations
  * Configurable prefetch strategies per batch pattern type
  * Performance-aware optimization with hit rate tracking

- Enhance MLOptimization core integration
  * Unified interface integrating all Phase 1, 2, and 3 components
  * Coordinated shutdown and lifecycle management
  * Comprehensive metrics aggregation across all ML optimization layers

- Add Phase 3 comprehensive test coverage
  * Dataset pattern detection validation
  * Training optimizer workload management testing
  * Batch optimization pattern recognition testing
  * End-to-end ML optimization integration testing

Architecture Highlights:
- Clean separation of concerns with specialized detectors for different ML patterns
- Adaptive optimization that responds to detected training phases and patterns
- Scalable design supporting multiple concurrent training workloads
- Rich metrics and monitoring for all ML optimization components
- Production-ready with proper cleanup, timeouts, and resource management

Test Results: Core Phase 3 functionality verified and passing
Integration: Seamlessly builds upon Phase 1 prefetching and Phase 2 caching foundations
2025-08-30 15:53:35 -07:00

582 lines
18 KiB
Go

package ml
import (
"sync"
"time"
"github.com/seaweedfs/seaweedfs/weed/glog"
)
// DatasetAccessPattern represents different dataset access patterns in ML training
type DatasetAccessPattern int
const (
DatasetUnknown DatasetAccessPattern = iota
DatasetSequential // Linear traversal through dataset
DatasetShuffle // Randomized access within epochs
DatasetBatch // Batch-based access patterns
DatasetMultiEpoch // Cross-epoch pattern detection
DatasetDistributed // Multi-GPU/distributed training patterns
DatasetValidation // Validation/test set access patterns
)
// DatasetTraversalInfo holds information about dataset traversal patterns
type DatasetTraversalInfo struct {
sync.RWMutex
// Dataset characteristics
DatasetSize int64 // Estimated total dataset size
ItemSize int64 // Average item size
ItemCount int64 // Number of items in dataset
BatchSize int // Detected batch size
EpochCount int // Number of completed epochs
// Access patterns
Pattern DatasetAccessPattern // Current detected pattern
LastEpochStart time.Time // When current epoch started
EpochDuration time.Duration // Average epoch duration
ItemsPerSecond float64 // Processing throughput
// Traversal tracking
AccessOrder []int64 // Recent access order for pattern detection
EpochBoundaries []int64 // File offsets where epochs start
ShufflePattern []int // Detected shuffle pattern if any
// Batch detection
BatchStartOffsets []int64 // Starting offsets of detected batches
BatchAccessTimes []time.Time // When batches were accessed
// Statistics
TotalAccesses int64 // Total number of accesses
EpochAccesses int64 // Accesses in current epoch
ValidationAccess bool // Whether this looks like validation data
// Prediction and optimization
PredictedNextAccess int64 // Predicted next access offset
OptimalPrefetchSize int64 // Recommended prefetch size
ShouldCache bool // Whether to aggressively cache this dataset
}
// DatasetPatternDetector detects and analyzes ML dataset access patterns
type DatasetPatternDetector struct {
sync.RWMutex
// Configuration
maxDatasets int // Maximum datasets to track
epochDetectionWindow int // Number of accesses to analyze for epoch detection
batchDetectionWindow int // Number of accesses to analyze for batch detection
shuffleWindowSize int // Size of window to detect shuffling
// Active datasets
datasets map[uint64]*DatasetTraversalInfo // inode -> dataset info
// Pattern detection parameters
sequentialThreshold float64 // Threshold for sequential detection
shuffleThreshold float64 // Threshold for shuffle detection
batchSizeVariance float64 // Allowed variance in batch size detection
// Statistics
totalDatasets int64 // Total datasets seen
patternsDetected map[DatasetAccessPattern]int64 // Count of each pattern detected
// Cleanup
lastCleanup time.Time // When we last cleaned up
cleanupInterval time.Duration // How often to cleanup
}
// NewDatasetPatternDetector creates a new dataset pattern detector
func NewDatasetPatternDetector() *DatasetPatternDetector {
return &DatasetPatternDetector{
maxDatasets: 100, // Track up to 100 datasets
epochDetectionWindow: 1000, // Look at last 1000 accesses for epoch detection
batchDetectionWindow: 50, // Look at last 50 accesses for batch detection
shuffleWindowSize: 100, // Look at 100-item windows for shuffle detection
datasets: make(map[uint64]*DatasetTraversalInfo),
patternsDetected: make(map[DatasetAccessPattern]int64),
sequentialThreshold: 0.8, // 80% sequential for sequential pattern
shuffleThreshold: 0.6, // 60% randomness for shuffle pattern
batchSizeVariance: 0.15, // 15% variance allowed in batch sizes
cleanupInterval: 10 * time.Minute,
}
}
// RecordDatasetAccess records an access to a dataset file and updates pattern detection
func (dpd *DatasetPatternDetector) RecordDatasetAccess(inode uint64, offset int64, size int, fileSize int64, isNewEpoch bool) *DatasetTraversalInfo {
dpd.Lock()
defer dpd.Unlock()
// Get or create dataset info
datasetInfo := dpd.datasets[inode]
if datasetInfo == nil {
datasetInfo = &DatasetTraversalInfo{
DatasetSize: fileSize,
ItemSize: int64(size), // Initial estimate
LastEpochStart: time.Now(),
AccessOrder: make([]int64, 0, dpd.epochDetectionWindow),
EpochBoundaries: make([]int64, 0, 10),
BatchStartOffsets: make([]int64, 0, dpd.batchDetectionWindow),
BatchAccessTimes: make([]time.Time, 0, dpd.batchDetectionWindow),
Pattern: DatasetUnknown,
}
dpd.datasets[inode] = datasetInfo
dpd.totalDatasets++
glog.V(3).Infof("New dataset registered: inode=%d, size=%d", inode, fileSize)
}
datasetInfo.Lock()
defer datasetInfo.Unlock()
now := time.Now()
// Update basic statistics
datasetInfo.TotalAccesses++
datasetInfo.EpochAccesses++
// Handle epoch boundary detection
if isNewEpoch || dpd.detectEpochBoundary(datasetInfo, offset) {
dpd.handleEpochBoundary(datasetInfo, offset, now)
}
// Update access tracking
datasetInfo.AccessOrder = append(datasetInfo.AccessOrder, offset)
if len(datasetInfo.AccessOrder) > dpd.epochDetectionWindow {
datasetInfo.AccessOrder = datasetInfo.AccessOrder[1:]
}
// Update batch tracking
datasetInfo.BatchStartOffsets = append(datasetInfo.BatchStartOffsets, offset)
datasetInfo.BatchAccessTimes = append(datasetInfo.BatchAccessTimes, now)
if len(datasetInfo.BatchStartOffsets) > dpd.batchDetectionWindow {
datasetInfo.BatchStartOffsets = datasetInfo.BatchStartOffsets[1:]
datasetInfo.BatchAccessTimes = datasetInfo.BatchAccessTimes[1:]
}
// Detect patterns
oldPattern := datasetInfo.Pattern
dpd.detectDatasetPattern(datasetInfo)
// Update predictions and recommendations
dpd.updatePredictions(datasetInfo)
// Log pattern changes
if oldPattern != datasetInfo.Pattern {
dpd.patternsDetected[datasetInfo.Pattern]++
glog.V(2).Infof("Dataset pattern changed: inode=%d, %v -> %v, batch_size=%d",
inode, oldPattern, datasetInfo.Pattern, datasetInfo.BatchSize)
}
return datasetInfo
}
// detectEpochBoundary detects if we've started a new epoch
func (dpd *DatasetPatternDetector) detectEpochBoundary(info *DatasetTraversalInfo, offset int64) bool {
// Simple heuristic: if we're accessing near the beginning of the file after accessing later parts
if len(info.AccessOrder) < 2 {
return false
}
// If current access is near beginning (first 10%) and previous was near end (last 50%)
fileStart := info.DatasetSize / 10
fileMiddle := info.DatasetSize / 2
previousOffset := info.AccessOrder[len(info.AccessOrder)-1]
return offset < fileStart && previousOffset > fileMiddle
}
// handleEpochBoundary handles the start of a new epoch
func (dpd *DatasetPatternDetector) handleEpochBoundary(info *DatasetTraversalInfo, offset int64, now time.Time) {
if !info.LastEpochStart.IsZero() {
// Calculate epoch duration
epochDuration := now.Sub(info.LastEpochStart)
if info.EpochDuration == 0 {
info.EpochDuration = epochDuration
} else {
// Running average
info.EpochDuration = (info.EpochDuration + epochDuration) / 2
}
// Calculate throughput
if epochDuration > 0 && info.EpochAccesses > 0 {
info.ItemsPerSecond = float64(info.EpochAccesses) / epochDuration.Seconds()
}
}
info.EpochCount++
info.LastEpochStart = now
info.EpochAccesses = 0
info.EpochBoundaries = append(info.EpochBoundaries, offset)
// Keep only recent epoch boundaries
if len(info.EpochBoundaries) > 10 {
info.EpochBoundaries = info.EpochBoundaries[len(info.EpochBoundaries)-10:]
}
glog.V(3).Infof("Epoch boundary detected: inode=%d, epoch=%d, duration=%v, throughput=%.1f items/sec",
info.DatasetSize, info.EpochCount, info.EpochDuration, info.ItemsPerSecond)
}
// detectDatasetPattern analyzes recent accesses to determine the dataset access pattern
func (dpd *DatasetPatternDetector) detectDatasetPattern(info *DatasetTraversalInfo) {
if len(info.AccessOrder) < 10 {
return // Need more data
}
// Analyze last N accesses
windowSize := min(len(info.AccessOrder), 50)
recentAccesses := info.AccessOrder[len(info.AccessOrder)-windowSize:]
// Calculate various pattern indicators
sequentialScore := dpd.calculateSequentialScore(recentAccesses)
shuffleScore := dpd.calculateShuffleScore(recentAccesses)
batchScore := dpd.calculateBatchScore(info)
// Determine pattern based on scores
newPattern := DatasetUnknown
if sequentialScore > dpd.sequentialThreshold {
newPattern = DatasetSequential
} else if shuffleScore > dpd.shuffleThreshold {
newPattern = DatasetShuffle
} else if batchScore > 0.7 {
newPattern = DatasetBatch
} else if info.EpochCount > 1 {
newPattern = DatasetMultiEpoch
}
// Special case: validation pattern (less frequent, different timing)
if dpd.detectValidationPattern(info) {
newPattern = DatasetValidation
}
info.Pattern = newPattern
glog.V(4).Infof("Pattern scores: inode=%d, seq=%.2f, shuffle=%.2f, batch=%.2f -> %v",
info.DatasetSize, sequentialScore, shuffleScore, batchScore, newPattern)
}
// calculateSequentialScore determines how sequential the access pattern is
func (dpd *DatasetPatternDetector) calculateSequentialScore(accesses []int64) float64 {
if len(accesses) < 2 {
return 0.0
}
sequentialCount := 0
for i := 1; i < len(accesses); i++ {
if accesses[i] > accesses[i-1] {
sequentialCount++
}
}
return float64(sequentialCount) / float64(len(accesses)-1)
}
// calculateShuffleScore determines how shuffled/randomized the access pattern is
func (dpd *DatasetPatternDetector) calculateShuffleScore(accesses []int64) float64 {
if len(accesses) < dpd.shuffleWindowSize {
return 0.0
}
// Look for randomness in access order
// A shuffled pattern will have accesses distributed across the file
// Calculate variance in access positions
var sum, sumSq float64
n := float64(len(accesses))
for _, offset := range accesses {
sum += float64(offset)
sumSq += float64(offset) * float64(offset)
}
mean := sum / n
variance := (sumSq / n) - (mean * mean)
// Higher variance suggests more randomness/shuffling
// Normalize by dataset size
if len(accesses) > 0 {
maxOffset := float64(accesses[0])
for _, offset := range accesses {
if float64(offset) > maxOffset {
maxOffset = float64(offset)
}
}
if maxOffset > 0 {
normalizedVariance := variance / (maxOffset * maxOffset)
return minFloat64(normalizedVariance*10, 1.0) // Scale to 0-1 range
}
}
return 0.0
}
// calculateBatchScore determines if accesses follow a clear batch pattern
func (dpd *DatasetPatternDetector) calculateBatchScore(info *DatasetTraversalInfo) float64 {
if len(info.BatchStartOffsets) < 5 {
return 0.0
}
// Look for regular intervals between batch starts
intervals := make([]int64, 0, len(info.BatchStartOffsets)-1)
for i := 1; i < len(info.BatchStartOffsets); i++ {
interval := info.BatchStartOffsets[i] - info.BatchStartOffsets[i-1]
if interval > 0 {
intervals = append(intervals, interval)
}
}
if len(intervals) < 3 {
return 0.0
}
// Calculate coefficient of variation for intervals
var sum, sumSq float64
for _, interval := range intervals {
sum += float64(interval)
sumSq += float64(interval) * float64(interval)
}
n := float64(len(intervals))
mean := sum / n
variance := (sumSq / n) - (mean * mean)
if mean > 0 {
cv := variance / (mean * mean) // Coefficient of variation
// Lower CV (more regular intervals) = higher batch score
batchScore := maxFloat64(0.0, 1.0-cv)
// Update detected batch size
if batchScore > 0.5 && mean > 0 {
estimatedBatchSize := int(mean / float64(info.ItemSize))
if estimatedBatchSize > 0 {
info.BatchSize = estimatedBatchSize
}
}
return batchScore
}
return 0.0
}
// detectValidationPattern determines if this looks like validation dataset access
func (dpd *DatasetPatternDetector) detectValidationPattern(info *DatasetTraversalInfo) bool {
// Validation datasets typically:
// 1. Are accessed less frequently than training data
// 2. Have more regular/sequential access patterns
// 3. Are accessed after training phases
if info.TotalAccesses < 100 {
return false
}
// Check access frequency (validation typically accessed less often)
avgTimeBetweenAccesses := time.Duration(0)
if len(info.BatchAccessTimes) > 1 {
totalDuration := info.BatchAccessTimes[len(info.BatchAccessTimes)-1].Sub(info.BatchAccessTimes[0])
avgTimeBetweenAccesses = totalDuration / time.Duration(len(info.BatchAccessTimes)-1)
}
// If average time between accesses is > 1 minute, might be validation
if avgTimeBetweenAccesses > time.Minute {
info.ValidationAccess = true
return true
}
return false
}
// updatePredictions updates predictions and optimization recommendations
func (dpd *DatasetPatternDetector) updatePredictions(info *DatasetTraversalInfo) {
if len(info.AccessOrder) < 2 {
return
}
switch info.Pattern {
case DatasetSequential:
// Predict next sequential access
lastAccess := info.AccessOrder[len(info.AccessOrder)-1]
info.PredictedNextAccess = lastAccess + info.ItemSize
info.OptimalPrefetchSize = info.ItemSize * int64(info.BatchSize) * 2 // Prefetch 2 batches ahead
info.ShouldCache = true
case DatasetShuffle:
// For shuffled access, prefetch is less predictable but still valuable
info.OptimalPrefetchSize = info.ItemSize * int64(info.BatchSize) // Prefetch current batch
info.ShouldCache = true
case DatasetBatch:
// Predict batch-aligned access
if info.BatchSize > 0 {
info.OptimalPrefetchSize = info.ItemSize * int64(info.BatchSize) * 3 // Prefetch 3 batches
info.ShouldCache = true
}
case DatasetValidation:
// Validation data can be more aggressively cached
info.OptimalPrefetchSize = minInt64(info.DatasetSize/10, 1024*1024*50) // Up to 50MB or 10% of dataset
info.ShouldCache = true
default:
info.OptimalPrefetchSize = info.ItemSize * 8 // Default prefetch
info.ShouldCache = false
}
// Ensure prefetch size is reasonable
info.OptimalPrefetchSize = maxInt64(info.OptimalPrefetchSize, 64*1024) // At least 64KB
info.OptimalPrefetchSize = minInt64(info.OptimalPrefetchSize, 100*1024*1024) // At most 100MB
}
// GetDatasetInfo returns information about a dataset
func (dpd *DatasetPatternDetector) GetDatasetInfo(inode uint64) *DatasetTraversalInfo {
dpd.RLock()
defer dpd.RUnlock()
return dpd.datasets[inode]
}
// GetDatasetMetrics returns comprehensive metrics about dataset patterns
func (dpd *DatasetPatternDetector) GetDatasetMetrics() DatasetPatternMetrics {
dpd.RLock()
defer dpd.RUnlock()
metrics := DatasetPatternMetrics{
TotalDatasets: dpd.totalDatasets,
ActiveDatasets: int64(len(dpd.datasets)),
PatternsDetected: make(map[DatasetAccessPattern]int64),
}
// Copy pattern counts
for pattern, count := range dpd.patternsDetected {
metrics.PatternsDetected[pattern] = count
}
// Calculate aggregate statistics
var totalEpochs, totalBatches int64
var avgThroughput float64
activeCount := 0
for _, info := range dpd.datasets {
info.RLock()
totalEpochs += int64(info.EpochCount)
if info.BatchSize > 0 {
totalBatches += int64(info.TotalAccesses / int64(info.BatchSize))
}
if info.ItemsPerSecond > 0 {
avgThroughput += info.ItemsPerSecond
activeCount++
}
info.RUnlock()
}
metrics.TotalEpochs = totalEpochs
metrics.TotalBatches = totalBatches
if activeCount > 0 {
metrics.AverageThroughput = avgThroughput / float64(activeCount)
}
return metrics
}
// DatasetPatternMetrics holds metrics for dataset pattern detection
type DatasetPatternMetrics struct {
TotalDatasets int64 `json:"total_datasets"`
ActiveDatasets int64 `json:"active_datasets"`
TotalEpochs int64 `json:"total_epochs"`
TotalBatches int64 `json:"total_batches"`
AverageThroughput float64 `json:"average_throughput"`
PatternsDetected map[DatasetAccessPattern]int64 `json:"patterns_detected"`
}
// Cleanup removes old dataset information
func (dpd *DatasetPatternDetector) Cleanup() {
dpd.Lock()
defer dpd.Unlock()
now := time.Now()
if now.Sub(dpd.lastCleanup) < dpd.cleanupInterval {
return
}
// Remove datasets that haven't been accessed recently
toRemove := make([]uint64, 0)
for inode, info := range dpd.datasets {
info.RLock()
lastAccess := time.Time{}
if len(info.BatchAccessTimes) > 0 {
lastAccess = info.BatchAccessTimes[len(info.BatchAccessTimes)-1]
}
shouldRemove := now.Sub(lastAccess) > 30*time.Minute
info.RUnlock()
if shouldRemove {
toRemove = append(toRemove, inode)
}
}
for _, inode := range toRemove {
delete(dpd.datasets, inode)
}
if len(toRemove) > 0 {
glog.V(3).Infof("Cleaned up %d old dataset entries", len(toRemove))
}
dpd.lastCleanup = now
}
// Helper functions
func minFloat64(a, b float64) float64 {
if a < b {
return a
}
return b
}
func maxFloat64(a, b float64) float64 {
if a > b {
return a
}
return b
}
func minInt64(a, b int64) int64 {
if a < b {
return a
}
return b
}
func maxInt64(a, b int64) int64 {
if a > b {
return a
}
return b
}
// String methods for enums
func (dap DatasetAccessPattern) String() string {
switch dap {
case DatasetSequential:
return "Sequential"
case DatasetShuffle:
return "Shuffle"
case DatasetBatch:
return "Batch"
case DatasetMultiEpoch:
return "MultiEpoch"
case DatasetDistributed:
return "Distributed"
case DatasetValidation:
return "Validation"
default:
return "Unknown"
}
}