1
0
Fork 0
mirror of https://github.com/chrislusf/seaweedfs synced 2025-09-10 13:22:47 +02:00
seaweedfs/weed/mount/ml/examples/custom_ml_optimization.yaml
chrislu 814e0bb233 Phase 4: Revolutionary Recipe-Based ML Optimization Engine
🚀 Transform SeaweedFS ML optimizations from hard-coded framework-specific code
to a flexible, configuration-driven system using YAML/JSON rules and templates.

## Key Innovations:
- Rule-based optimization engine with conditions and actions
- Plugin system for framework detection (PyTorch, TensorFlow)
- Configuration manager with YAML/JSON support
- Adaptive learning from usage patterns
- Template-based optimization recipes

## New Components:
- optimization_engine.go: Core rule evaluation and application
- config_manager.go: Configuration loading and validation
- plugins/pytorch_plugin.go: PyTorch-specific optimizations
- plugins/tensorflow_plugin.go: TensorFlow-specific optimizations
- examples/: Sample configuration files and documentation

## Benefits:
- Zero-code customization through configuration files
- Support for any ML framework via plugins
- Intelligent adaptation based on workload patterns
- Production-ready with comprehensive error handling
- Backward compatible with existing optimizations

This replaces hard-coded optimization logic with a flexible system that can
adapt to new frameworks and workload patterns without code changes.
2025-08-30 16:49:12 -07:00

283 lines
8.1 KiB
YAML

# Custom ML Optimization Configuration
# This configuration demonstrates the flexible, recipe-based optimization system
version: "1.0.0"
name: "Custom ML Optimization Configuration"
description: "Production-ready configuration for diverse ML workloads"
author: "ML Infrastructure Team"
tags: ["production", "custom", "ml", "multi-framework"]
# Global optimization settings
settings:
default_strategy: "adaptive"
max_concurrent_rules: 8
confidence_threshold: 0.65
adaptive_learning: true
metrics_collection: true
debug: false
memory_limit_mb: 1024
cpu_limit_percent: 15
experimental_features:
neural_optimization: false
predictive_caching: true
multi_tier_storage: true
# Custom optimization rules
rules:
- id: "large_model_chunked_loading"
name: "Large Model Chunked Loading"
description: "Optimize loading for models larger than 1GB using chunked approach"
priority: 100
conditions:
- type: "file_context"
property: "type"
operator: "equals"
value: "model"
weight: 1.0
- type: "file_context"
property: "size"
operator: "greater_than"
value: 1073741824 # 1GB
weight: 0.9
actions:
- type: "chunked_load"
target: "file"
parameters:
chunk_size: 134217728 # 128MB chunks
parallel_chunks: 4
memory_mapping: true
lazy_loading: true
compression: false
- id: "training_data_pipeline_optimization"
name: "Training Data Pipeline Optimization"
description: "Optimized data pipeline for training workloads"
priority: 95
conditions:
- type: "workload_context"
property: "workload_type"
operator: "equals"
value: "training"
weight: 1.0
- type: "access_pattern"
property: "pattern_type"
operator: "in"
value: ["sequential", "strided", "batch"]
weight: 0.8
- type: "file_context"
property: "type"
operator: "equals"
value: "dataset"
weight: 0.9
actions:
- type: "data_pipeline"
target: "dataset"
parameters:
prefetch_buffer: 16
parallel_reads: 8
shuffle_buffer: 10000
cache_dataset: true
compression_aware: true
- id: "inference_latency_optimization"
name: "Inference Latency Optimization"
description: "Low-latency optimizations for real-time inference"
priority: 90
conditions:
- type: "workload_context"
property: "workload_type"
operator: "equals"
value: "inference"
weight: 1.0
- type: "workload_context"
property: "batch_size"
operator: "less_equal"
value: 8
weight: 0.7
actions:
- type: "inference_optimization"
target: "model"
parameters:
preload_model: true
memory_pool: true
batch_optimization: false
warm_up_iterations: 5
precision: "fp16"
- id: "distributed_training_coordination"
name: "Distributed Training Coordination"
description: "Coordinate file access across distributed training nodes"
priority: 85
conditions:
- type: "system_context"
property: "gpu_count"
operator: "greater_than"
value: 4
weight: 0.8
- type: "workload_context"
property: "workload_type"
operator: "equals"
value: "training"
weight: 1.0
actions:
- type: "distributed_coordination"
target: "workload"
parameters:
node_awareness: true
data_locality: true
gradient_sync: true
communication_optimization: true
- id: "gpu_memory_aware_caching"
name: "GPU Memory Aware Caching"
description: "Cache optimization considering available GPU memory"
priority: 80
conditions:
- type: "system_context"
property: "gpu_count"
operator: "greater_than"
value: 0
weight: 0.9
- type: "system_context"
property: "available_memory"
operator: "greater_than"
value: 8589934592 # 8GB
weight: 0.6
actions:
- type: "gpu_aware_cache"
target: "file"
parameters:
gpu_memory_threshold: 0.7 # Use up to 70% of GPU memory
cpu_gpu_coordination: true
unified_memory: false
cache_priority: "gpu_first"
# Optimization templates for different use cases
templates:
- id: "research_experimentation"
name: "Research & Experimentation Template"
description: "Flexible template for ML research with adaptive optimizations"
category: "research"
rules:
- "large_model_chunked_loading"
- "training_data_pipeline_optimization"
- "gpu_memory_aware_caching"
parameters:
optimization_level: "adaptive"
experiment_tracking: true
resource_monitoring: true
flexible_caching: true
- id: "production_training"
name: "Production Training Template"
description: "High-performance template for production ML training"
category: "production_training"
rules:
- "training_data_pipeline_optimization"
- "distributed_training_coordination"
- "gpu_memory_aware_caching"
- "large_model_chunked_loading"
parameters:
optimization_level: "maximum"
fault_tolerance: true
checkpoint_optimization: true
monitoring: "comprehensive"
- id: "real_time_inference"
name: "Real-time Inference Template"
description: "Ultra-low latency template for real-time ML inference"
category: "inference"
rules:
- "inference_latency_optimization"
- "gpu_memory_aware_caching"
parameters:
optimization_level: "latency"
batch_processing: false
memory_pool: true
warm_up: true
- id: "batch_inference"
name: "Batch Inference Template"
description: "Throughput-optimized template for batch inference workloads"
category: "batch_inference"
rules:
- "large_model_chunked_loading"
- "gpu_memory_aware_caching"
- "training_data_pipeline_optimization" # Reuse for batch data processing
parameters:
optimization_level: "throughput"
batch_processing: true
parallel_inference: true
queue_management: true
# Framework-specific configurations
frameworks:
pytorch:
enabled: true
version: "2.0+"
rules:
- "large_model_chunked_loading"
- "training_data_pipeline_optimization"
- "gpu_memory_aware_caching"
parameters:
dataloader_optimization: true
tensor_parallelism: true
gradient_compression: true
mixed_precision: true
compile_optimization: true
tensorflow:
enabled: true
version: "2.10+"
rules:
- "training_data_pipeline_optimization"
- "distributed_training_coordination"
- "inference_latency_optimization"
parameters:
dataset_optimization: true
xla_compilation: true
mixed_precision: true
tensorrt_optimization: true
savedmodel_optimization: true
huggingface:
enabled: true
rules:
- "large_model_chunked_loading"
- "inference_latency_optimization"
parameters:
transformer_optimization: true
model_parallelism: true
attention_optimization: true
tokenizer_caching: true
jax:
enabled: true
rules:
- "distributed_training_coordination"
- "gpu_memory_aware_caching"
parameters:
jit_compilation: true
device_parallelism: true
gradient_transformation: true
# Custom metadata for configuration management
metadata:
config_version: "1.0.0"
created_by: "ML Infrastructure Team"
last_updated: "2024-01-15"
compatible_with: ["seaweedfs-ml-v1", "seaweedfs-ml-v2"]
environment: "production"
regions: ["us-west-2", "eu-west-1"]
gpu_types: ["V100", "A100", "H100"]
use_cases:
- "large_language_models"
- "computer_vision"
- "recommendation_systems"
- "time_series_forecasting"
- "reinforcement_learning"
performance_targets:
training_throughput: "high"
inference_latency: "low"
resource_efficiency: "optimal"
scalability: "horizontal"