1
0
Fork 0
mirror of https://github.com/chrislusf/seaweedfs synced 2025-09-10 05:12:47 +02:00
seaweedfs/weed/mount/ml/optimization_engine_test.go
2025-08-30 17:08:02 -07:00

367 lines
9.4 KiB
Go

package ml
import (
"testing"
)
// TestOptimizationEngine_Basic tests the basic functionality of the optimization engine
func TestOptimizationEngine_Basic(t *testing.T) {
engine := NewOptimizationEngine(true)
defer engine.Shutdown()
if engine == nil {
t.Fatal("Should create optimization engine")
}
if !engine.enabled {
t.Error("Engine should be enabled")
}
// Check that default rules and strategies are loaded
if len(engine.rules) == 0 {
t.Error("Should have default rules loaded")
}
if len(engine.strategies) == 0 {
t.Error("Should have default strategies loaded")
}
t.Logf("Engine initialized with %d rules, %d strategies", len(engine.rules), len(engine.strategies))
}
// TestOptimizationEngine_RuleEvaluation tests rule evaluation
func TestOptimizationEngine_RuleEvaluation(t *testing.T) {
engine := NewOptimizationEngine(true)
defer engine.Shutdown()
// Create test context for sequential access of a large model file
context := &OptimizationContext{
FilePath: "/models/large_model.pth",
FileSize: 2 * 1024 * 1024 * 1024, // 2GB
FileType: "model",
AccessPattern: SequentialAccess,
AccessFrequency: 10,
Framework: "pytorch",
WorkloadType: "training",
}
// Apply optimizations
result := engine.OptimizeAccess(context)
if result == nil {
t.Fatal("Should return optimization result")
}
if !result.Applied {
t.Error("Should apply optimizations for large model file with sequential access")
}
if result.Confidence < 0.5 {
t.Errorf("Expected confidence >= 0.5, got %.2f", result.Confidence)
}
if len(result.Optimizations) == 0 {
t.Error("Should have applied optimizations")
}
t.Logf("Applied %d optimizations with confidence %.2f",
len(result.Optimizations), result.Confidence)
for i, opt := range result.Optimizations {
t.Logf("Optimization %d: type=%s, target=%s", i+1, opt.Type, opt.Target)
}
}
// TestOptimizationEngine_FrameworkDetection tests framework detection
func TestOptimizationEngine_FrameworkDetection(t *testing.T) {
engine := NewOptimizationEngine(true)
defer engine.Shutdown()
testCases := []struct {
filePath string
expectedFramework string
}{
{"/models/model.pth", "pytorch"},
{"/models/model.pt", "pytorch"},
{"/models/saved_model.pb", "tensorflow"},
{"/models/model.h5", "tensorflow"},
{"/models/checkpoint.ckpt", "tensorflow"},
{"/data/dataset.tfrecord", "tensorflow"},
{"/unknown/file.bin", ""},
}
for _, tc := range testCases {
framework := engine.detectFramework(tc.filePath, nil)
if tc.expectedFramework == "" {
if framework != "" {
t.Errorf("File %s: expected no framework detection, got %s", tc.filePath, framework)
}
} else {
if framework != tc.expectedFramework {
t.Errorf("File %s: expected framework %s, got %s",
tc.filePath, tc.expectedFramework, framework)
}
}
}
}
// TestOptimizationEngine_FileTypeDetection tests file type detection
func TestOptimizationEngine_FileTypeDetection(t *testing.T) {
engine := NewOptimizationEngine(true)
defer engine.Shutdown()
testCases := []struct {
filePath string
expectedType string
}{
{"/models/model.pth", "model"},
{"/data/dataset.csv", "dataset"},
{"/configs/config.yaml", "config"},
{"/logs/training.log", "log"},
{"/unknown/file.bin", "unknown"},
}
for _, tc := range testCases {
fileType := engine.detectFileType(tc.filePath)
if fileType != tc.expectedType {
t.Errorf("File %s: expected type %s, got %s",
tc.filePath, tc.expectedType, fileType)
}
}
}
// TestOptimizationEngine_ConditionEvaluation tests condition evaluation
func TestOptimizationEngine_ConditionEvaluation(t *testing.T) {
engine := NewOptimizationEngine(true)
defer engine.Shutdown()
context := &OptimizationContext{
FilePath: "/models/test.pth",
FileSize: 5 * 1024 * 1024, // 5MB
FileType: "model",
AccessPattern: SequentialAccess,
Framework: "pytorch",
}
// Test various condition types
testConditions := []struct {
condition RuleCondition
expected bool
}{
{
condition: RuleCondition{
Type: "file_pattern",
Property: "extension",
Operator: "equals",
Value: ".pth",
},
expected: true,
},
{
condition: RuleCondition{
Type: "file_context",
Property: "size",
Operator: "greater_than",
Value: 1024 * 1024, // 1MB
},
expected: true,
},
{
condition: RuleCondition{
Type: "access_pattern",
Property: "pattern_type",
Operator: "equals",
Value: "sequential",
},
expected: true,
},
{
condition: RuleCondition{
Type: "workload_context",
Property: "framework",
Operator: "equals",
Value: "tensorflow",
},
expected: false,
},
}
for i, tc := range testConditions {
result := engine.evaluateCondition(tc.condition, context)
if result != tc.expected {
t.Errorf("Condition %d: expected %v, got %v", i+1, tc.expected, result)
}
}
}
// TestOptimizationEngine_PluginSystem tests the plugin system
func TestOptimizationEngine_PluginSystem(t *testing.T) {
engine := NewOptimizationEngine(true)
defer engine.Shutdown()
// Register a test plugin
plugin := NewPyTorchPlugin()
err := engine.RegisterPlugin(plugin)
if err != nil {
t.Fatalf("Failed to register plugin: %v", err)
}
// Verify plugin is registered
if _, exists := engine.plugins["pytorch"]; !exists {
t.Error("PyTorch plugin should be registered")
}
// Test framework detection through plugin
confidence := plugin.DetectFramework("/models/test.pth", nil)
if confidence < 0.5 {
t.Errorf("Expected high confidence for .pth file, got %.2f", confidence)
}
// Test optimization hints
context := &OptimizationContext{
FilePath: "/models/test.pth",
FileSize: 100 * 1024 * 1024, // 100MB
FileType: "model",
Framework: "pytorch",
}
hints := plugin.GetOptimizationHints(context)
if len(hints) == 0 {
t.Error("Plugin should provide optimization hints")
}
t.Logf("Plugin provided %d optimization hints", len(hints))
}
// TestOptimizationEngine_UsagePatterns tests usage pattern learning
func TestOptimizationEngine_UsagePatterns(t *testing.T) {
engine := NewOptimizationEngine(true)
defer engine.Shutdown()
context := &OptimizationContext{
FilePath: "/models/training_model.pth",
FileSize: 50 * 1024 * 1024, // 50MB
FileType: "model",
AccessPattern: SequentialAccess,
Framework: "pytorch",
WorkloadType: "training",
}
// Apply optimization multiple times to build usage patterns
for i := 0; i < 5; i++ {
result := engine.OptimizeAccess(context)
if result == nil {
t.Fatalf("Optimization %d failed", i+1)
}
}
// Check that usage patterns are being tracked
if len(engine.usagePatterns) == 0 {
t.Error("Should have learned usage patterns")
}
// Verify pattern characteristics
for patternKey, pattern := range engine.usagePatterns {
t.Logf("Learned pattern: %s (frequency=%d, success_rate=%.2f)",
patternKey, pattern.Frequency, pattern.SuccessRate)
if pattern.Frequency < 1 {
t.Errorf("Pattern %s should have frequency >= 1", patternKey)
}
}
}
// TestOptimizationEngine_Metrics tests metrics collection
func TestOptimizationEngine_Metrics(t *testing.T) {
engine := NewOptimizationEngine(true)
defer engine.Shutdown()
metrics := engine.GetMetrics()
if metrics == nil {
t.Fatal("Should return metrics")
}
expectedKeys := []string{"enabled", "rules_count", "templates_count", "strategies_count"}
for _, key := range expectedKeys {
if _, exists := metrics[key]; !exists {
t.Errorf("Metrics should contain key: %s", key)
}
}
if metrics["enabled"] != true {
t.Error("Metrics should show engine as enabled")
}
t.Logf("Engine metrics: %+v", metrics)
}
// TestOptimizationEngine_ConfigurationDriven tests configuration-driven optimization
func TestOptimizationEngine_ConfigurationDriven(t *testing.T) {
engine := NewOptimizationEngine(true)
defer engine.Shutdown()
// Test that the engine can apply optimizations based on its loaded configuration
context := &OptimizationContext{
FilePath: "/data/dataset.csv",
FileSize: 10 * 1024 * 1024, // 10MB
FileType: "dataset",
AccessPattern: SequentialAccess,
Framework: "",
WorkloadType: "training",
BatchSize: 32,
}
result := engine.OptimizeAccess(context)
if result == nil {
t.Fatal("Should return optimization result")
}
// The engine should make intelligent decisions based on context
if result.Applied && len(result.Optimizations) > 0 {
t.Logf("Successfully applied %d optimizations", len(result.Optimizations))
for _, opt := range result.Optimizations {
if opt.Type == "" || opt.Target == "" {
t.Error("Optimization should have valid type and target")
}
}
}
if len(result.Recommendations) > 0 {
t.Logf("Generated %d recommendations", len(result.Recommendations))
for _, rec := range result.Recommendations {
t.Logf("Recommendation: %s", rec)
}
}
}
// TestOptimizationEngine_Shutdown tests proper shutdown
func TestOptimizationEngine_Shutdown(t *testing.T) {
engine := NewOptimizationEngine(true)
if !engine.enabled {
t.Error("Engine should start enabled")
}
engine.Shutdown()
if engine.enabled {
t.Error("Engine should be disabled after shutdown")
}
// Test that optimization doesn't work after shutdown
context := &OptimizationContext{
FilePath: "/test.pth",
FileSize: 1024,
}
result := engine.OptimizeAccess(context)
if result.Applied {
t.Error("Should not apply optimizations after shutdown")
}
}